Step |
Hyp |
Ref |
Expression |
1 |
|
ftc2ditg.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
2 |
|
ftc2ditg.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
3 |
|
ftc2ditg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ) |
4 |
|
ftc2ditg.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) |
5 |
|
ftc2ditg.c |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
6 |
|
ftc2ditg.i |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) |
7 |
|
ftc2ditg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
9 |
8
|
ditgpos |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
10 |
|
iccssre |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
12 |
11 3
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
14 |
11 4
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
16 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ℝ ⊆ ℂ ) |
18 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
19 |
7 18
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
21 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
22 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
23 |
12 14 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
25 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
26 |
25
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
27 |
25 26
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) ∧ ( ( 𝑋 [,] 𝑌 ) ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
28 |
17 20 21 24 27
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
29 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
30 |
12 14 29
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
32 |
31
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
33 |
28 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
34 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
35 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
36 |
1 2 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) ) |
37 |
3 36
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌 ) ) |
38 |
37
|
simp2d |
⊢ ( 𝜑 → 𝑋 ≤ 𝐴 ) |
39 |
|
iooss1 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
40 |
34 38 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) ) |
41 |
2
|
rexrd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
42 |
|
elicc2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
43 |
1 2 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) ) |
44 |
4 43
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌 ) ) |
45 |
44
|
simp3d |
⊢ ( 𝜑 → 𝐵 ≤ 𝑌 ) |
46 |
|
iooss2 |
⊢ ( ( 𝑌 ∈ ℝ* ∧ 𝐵 ≤ 𝑌 ) → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
47 |
41 45 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
48 |
40 47
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) ) |
50 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
51 |
|
rescncf |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) → ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) |
52 |
49 50 51
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
53 |
33 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
54 |
|
cncff |
⊢ ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
55 |
5 54
|
syl |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
56 |
55
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
58 |
57
|
reseq1d |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
59 |
49
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
60 |
58 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
61 |
33 60
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
62 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
64 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V ) |
65 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D 𝐹 ) ∈ 𝐿1 ) |
66 |
57 65
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
67 |
49 63 64 66
|
iblss |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 ) |
68 |
61 67
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ∈ 𝐿1 ) |
69 |
|
iccss2 |
⊢ ( ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) ) |
70 |
3 4 69
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) ) |
71 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
72 |
70 7 71
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
74 |
13 15 8 53 68 73
|
ftc2 |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) ) |
75 |
33
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 ) ) |
76 |
|
fvres |
⊢ ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
77 |
75 76
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
78 |
77
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
79 |
13
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
80 |
15
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
81 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
82 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
83 |
|
fvres |
⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
84 |
|
fvres |
⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
85 |
83 84
|
oveqan12d |
⊢ ( ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
86 |
81 82 85
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
87 |
79 80 8 86
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
88 |
74 78 87
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
89 |
9 88
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ⨜ [ 𝐴 → 𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |