Metamath Proof Explorer


Theorem ftc2ditglem

Description: Lemma for ftc2ditg . (Contributed by Mario Carneiro, 3-Sep-2014)

Ref Expression
Hypotheses ftc2ditg.x ( 𝜑𝑋 ∈ ℝ )
ftc2ditg.y ( 𝜑𝑌 ∈ ℝ )
ftc2ditg.a ( 𝜑𝐴 ∈ ( 𝑋 [,] 𝑌 ) )
ftc2ditg.b ( 𝜑𝐵 ∈ ( 𝑋 [,] 𝑌 ) )
ftc2ditg.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) )
ftc2ditg.i ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 )
ftc2ditg.f ( 𝜑𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) )
Assertion ftc2ditglem ( ( 𝜑𝐴𝐵 ) → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ftc2ditg.x ( 𝜑𝑋 ∈ ℝ )
2 ftc2ditg.y ( 𝜑𝑌 ∈ ℝ )
3 ftc2ditg.a ( 𝜑𝐴 ∈ ( 𝑋 [,] 𝑌 ) )
4 ftc2ditg.b ( 𝜑𝐵 ∈ ( 𝑋 [,] 𝑌 ) )
5 ftc2ditg.c ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) )
6 ftc2ditg.i ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 )
7 ftc2ditg.f ( 𝜑𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) )
8 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
9 8 ditgpos ( ( 𝜑𝐴𝐵 ) → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 )
10 iccssre ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ )
11 1 2 10 syl2anc ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ )
12 11 3 sseldd ( 𝜑𝐴 ∈ ℝ )
13 12 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴 ∈ ℝ )
14 11 4 sseldd ( 𝜑𝐵 ∈ ℝ )
15 14 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵 ∈ ℝ )
16 ax-resscn ℝ ⊆ ℂ
17 16 a1i ( ( 𝜑𝐴𝐵 ) → ℝ ⊆ ℂ )
18 cncff ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ )
19 7 18 syl ( 𝜑𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ )
20 19 adantr ( ( 𝜑𝐴𝐵 ) → 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ )
21 11 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ )
22 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
23 12 14 22 syl2anc ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
24 23 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
25 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
26 25 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
27 25 26 dvres ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) ∧ ( ( 𝑋 [,] 𝑌 ) ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) )
28 17 20 21 24 27 syl22anc ( ( 𝜑𝐴𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) )
29 iccntr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) )
30 12 14 29 syl2anc ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) )
31 30 adantr ( ( 𝜑𝐴𝐵 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) )
32 31 reseq2d ( ( 𝜑𝐴𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) )
33 28 32 eqtrd ( ( 𝜑𝐴𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) )
34 1 rexrd ( 𝜑𝑋 ∈ ℝ* )
35 elicc2 ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌 ) ) )
36 1 2 35 syl2anc ( 𝜑 → ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌 ) ) )
37 3 36 mpbid ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝑋𝐴𝐴𝑌 ) )
38 37 simp2d ( 𝜑𝑋𝐴 )
39 iooss1 ( ( 𝑋 ∈ ℝ*𝑋𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) )
40 34 38 39 syl2anc ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝐵 ) )
41 2 rexrd ( 𝜑𝑌 ∈ ℝ* )
42 elicc2 ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌 ) ) )
43 1 2 42 syl2anc ( 𝜑 → ( 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌 ) ) )
44 4 43 mpbid ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝑋𝐵𝐵𝑌 ) )
45 44 simp3d ( 𝜑𝐵𝑌 )
46 iooss2 ( ( 𝑌 ∈ ℝ*𝐵𝑌 ) → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) )
47 41 45 46 syl2anc ( 𝜑 → ( 𝑋 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) )
48 40 47 sstrd ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) )
49 48 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) )
50 5 adantr ( ( 𝜑𝐴𝐵 ) → ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) )
51 rescncf ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝑋 (,) 𝑌 ) → ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) )
52 49 50 51 sylc ( ( 𝜑𝐴𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
53 33 52 eqeltrd ( ( 𝜑𝐴𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
54 cncff ( ( ℝ D 𝐹 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ )
55 5 54 syl ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ )
56 55 feqmptd ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) )
57 56 adantr ( ( 𝜑𝐴𝐵 ) → ( ℝ D 𝐹 ) = ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) )
58 57 reseq1d ( ( 𝜑𝐴𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) )
59 49 resmptd ( ( 𝜑𝐴𝐵 ) → ( ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) )
60 58 59 eqtrd ( ( 𝜑𝐴𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) )
61 33 60 eqtrd ( ( 𝜑𝐴𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) )
62 ioombl ( 𝐴 (,) 𝐵 ) ∈ dom vol
63 62 a1i ( ( 𝜑𝐴𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol )
64 fvexd ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ∈ V )
65 6 adantr ( ( 𝜑𝐴𝐵 ) → ( ℝ D 𝐹 ) ∈ 𝐿1 )
66 57 65 eqeltrrd ( ( 𝜑𝐴𝐵 ) → ( 𝑡 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 )
67 49 63 64 66 iblss ( ( 𝜑𝐴𝐵 ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ∈ 𝐿1 )
68 61 67 eqeltrd ( ( 𝜑𝐴𝐵 ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ∈ 𝐿1 )
69 iccss2 ( ( 𝐴 ∈ ( 𝑋 [,] 𝑌 ) ∧ 𝐵 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) )
70 3 4 69 syl2anc ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) )
71 rescncf ( ( 𝐴 [,] 𝐵 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( 𝐹 ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) )
72 70 7 71 sylc ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
73 72 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )
74 13 15 8 53 68 73 ftc2 ( ( 𝜑𝐴𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) )
75 33 fveq1d ( ( 𝜑𝐴𝐵 ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 ) )
76 fvres ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) )
77 75 76 sylan9eq ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) )
78 77 itgeq2dv ( ( 𝜑𝐴𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 )
79 13 rexrd ( ( 𝜑𝐴𝐵 ) → 𝐴 ∈ ℝ* )
80 15 rexrd ( ( 𝜑𝐴𝐵 ) → 𝐵 ∈ ℝ* )
81 ubicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) )
82 lbicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
83 fvres ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = ( 𝐹𝐵 ) )
84 fvres ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )
85 83 84 oveqan12d ( ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
86 81 82 85 syl2anc ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
87 79 80 8 86 syl3anc ( ( 𝜑𝐴𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
88 74 78 87 3eqtr3d ( ( 𝜑𝐴𝐵 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )
89 9 88 eqtrd ( ( 𝜑𝐴𝐵 ) → ⨜ [ 𝐴𝐵 ] ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹𝐵 ) − ( 𝐹𝐴 ) ) )