| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ftc2ditg.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 2 |  | ftc2ditg.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 3 |  | ftc2ditg.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 4 |  | ftc2ditg.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 5 |  | ftc2ditg.c | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 6 |  | ftc2ditg.i | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  𝐿1 ) | 
						
							| 7 |  | ftc2ditg.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 9 | 8 | ditgpos | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ⨜ [ 𝐴  →  𝐵 ] ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 10 |  | iccssre | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝑋 [,] 𝑌 )  ⊆  ℝ ) | 
						
							| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 [,] 𝑌 )  ⊆  ℝ ) | 
						
							| 12 | 11 3 | sseldd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 14 | 11 4 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 16 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ℝ  ⊆  ℂ ) | 
						
							| 18 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 19 | 7 18 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | 
						
							| 21 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝑋 [,] 𝑌 )  ⊆  ℝ ) | 
						
							| 22 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 23 | 12 14 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 25 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 26 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 27 | 25 26 | dvres | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  𝐹 : ( 𝑋 [,] 𝑌 ) ⟶ ℂ )  ∧  ( ( 𝑋 [,] 𝑌 )  ⊆  ℝ  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 28 | 17 20 21 24 27 | syl22anc | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 29 |  | iccntr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 30 | 12 14 29 | syl2anc | ⊢ ( 𝜑  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 32 | 31 | reseq2d | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 33 | 28 32 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 34 | 1 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 35 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝐴  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) ) | 
						
							| 36 | 1 2 35 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) ) | 
						
							| 37 | 3 36 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) | 
						
							| 38 | 37 | simp2d | ⊢ ( 𝜑  →  𝑋  ≤  𝐴 ) | 
						
							| 39 |  | iooss1 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑋  ≤  𝐴 )  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝐵 ) ) | 
						
							| 40 | 34 38 39 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝐵 ) ) | 
						
							| 41 | 2 | rexrd | ⊢ ( 𝜑  →  𝑌  ∈  ℝ* ) | 
						
							| 42 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝐵  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) ) | 
						
							| 43 | 1 2 42 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) ) | 
						
							| 44 | 4 43 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) | 
						
							| 45 | 44 | simp3d | ⊢ ( 𝜑  →  𝐵  ≤  𝑌 ) | 
						
							| 46 |  | iooss2 | ⊢ ( ( 𝑌  ∈  ℝ*  ∧  𝐵  ≤  𝑌 )  →  ( 𝑋 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 47 | 41 45 46 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 48 | 40 47 | sstrd | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 50 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  𝐹 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | 
						
							| 51 |  | rescncf | ⊢ ( ( 𝐴 (,) 𝐵 )  ⊆  ( 𝑋 (,) 𝑌 )  →  ( ( ℝ  D  𝐹 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) | 
						
							| 52 | 49 50 51 | sylc | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 53 | 33 52 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 54 |  | cncff | ⊢ ( ( ℝ  D  𝐹 )  ∈  ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ )  →  ( ℝ  D  𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 55 | 5 54 | syl | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | 
						
							| 56 | 55 | feqmptd | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( 𝑡  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  𝐹 )  =  ( 𝑡  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 58 | 57 | reseq1d | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) )  =  ( ( 𝑡  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ↾  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 59 | 49 | resmptd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( 𝑡  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ↾  ( 𝐴 (,) 𝐵 ) )  =  ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 60 | 58 59 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) )  =  ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 61 | 33 60 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 62 |  | ioombl | ⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol | 
						
							| 63 | 62 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴 (,) 𝐵 )  ∈  dom  vol ) | 
						
							| 64 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑡  ∈  ( 𝑋 (,) 𝑌 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  ∈  V ) | 
						
							| 65 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  𝐹 )  ∈  𝐿1 ) | 
						
							| 66 | 57 65 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝑡  ∈  ( 𝑋 (,) 𝑌 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ∈  𝐿1 ) | 
						
							| 67 | 49 63 64 66 | iblss | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ∈  𝐿1 ) | 
						
							| 68 | 61 67 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) )  ∈  𝐿1 ) | 
						
							| 69 |  | iccss2 | ⊢ ( ( 𝐴  ∈  ( 𝑋 [,] 𝑌 )  ∧  𝐵  ∈  ( 𝑋 [,] 𝑌 ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 70 | 3 4 69 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 71 |  | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ( 𝑋 [,] 𝑌 )  →  ( 𝐹  ∈  ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | 
						
							| 72 | 70 7 71 | sylc | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 74 | 13 15 8 53 68 73 | ftc2 | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 )  d 𝑡  =  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 )  −  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) ) | 
						
							| 75 | 33 | fveq1d | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 ) ) | 
						
							| 76 |  | fvres | ⊢ ( 𝑡  ∈  ( 𝐴 (,) 𝐵 )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( 𝐴 (,) 𝐵 ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 77 | 75 76 | sylan9eq | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 78 | 77 | itgeq2dv | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 79 | 13 | rexrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ* ) | 
						
							| 80 | 15 | rexrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ* ) | 
						
							| 81 |  | ubicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 82 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 83 |  | fvres | ⊢ ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 84 |  | fvres | ⊢ ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 85 | 83 84 | oveqan12d | ⊢ ( ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐴  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 )  −  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) )  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 86 | 81 82 85 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 )  −  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) )  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 87 | 79 80 8 86 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 )  −  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) )  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 88 | 74 78 87 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 89 | 9 88 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ⨜ [ 𝐴  →  𝐵 ] ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) |