Step |
Hyp |
Ref |
Expression |
1 |
|
fthmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
fthmon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
fthmon.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
4 |
|
fthmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
fthmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
fthmon.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
7 |
|
fthepi.e |
⊢ 𝐸 = ( Epi ‘ 𝐶 ) |
8 |
|
fthepi.p |
⊢ 𝑃 = ( Epi ‘ 𝐷 ) |
9 |
|
fthepi.1 |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) |
10 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
11 |
10 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
12 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) |
13 |
|
eqid |
⊢ ( oppCat ‘ 𝐷 ) = ( oppCat ‘ 𝐷 ) |
14 |
10 13 3
|
fthoppc |
⊢ ( 𝜑 → 𝐹 ( ( oppCat ‘ 𝐶 ) Faith ( oppCat ‘ 𝐷 ) ) tpos 𝐺 ) |
15 |
2 10
|
oppchom |
⊢ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐻 𝑌 ) |
16 |
6 15
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
17 |
|
eqid |
⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) |
18 |
|
eqid |
⊢ ( Mono ‘ ( oppCat ‘ 𝐷 ) ) = ( Mono ‘ ( oppCat ‘ 𝐷 ) ) |
19 |
|
ovtpos |
⊢ ( 𝑌 tpos 𝐺 𝑋 ) = ( 𝑋 𝐺 𝑌 ) |
20 |
19
|
fveq1i |
⊢ ( ( 𝑌 tpos 𝐺 𝑋 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) |
21 |
20 9
|
eqeltrid |
⊢ ( 𝜑 → ( ( 𝑌 tpos 𝐺 𝑋 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) |
22 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
23 |
22
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
24 |
3 23
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
25 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
26 |
24 25
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
27 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
29 |
28
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
30 |
13 29 18 8
|
oppcmon |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) ( Mono ‘ ( oppCat ‘ 𝐷 ) ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) |
31 |
21 30
|
eleqtrrd |
⊢ ( 𝜑 → ( ( 𝑌 tpos 𝐺 𝑋 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Mono ‘ ( oppCat ‘ 𝐷 ) ) ( 𝐹 ‘ 𝑋 ) ) ) |
32 |
11 12 14 5 4 16 17 18 31
|
fthmon |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
33 |
28
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
34 |
10 33 17 7
|
oppcmon |
⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
35 |
32 34
|
eleqtrd |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐸 𝑌 ) ) |