Step |
Hyp |
Ref |
Expression |
1 |
|
isfth.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isfth.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isfth.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
4 |
|
fthf1.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
5 |
|
fthf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
fthf1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
1 2 3
|
isfth2 |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
8 |
7
|
simprbi |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
13 |
11 12
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) ) |
14 |
11 12
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
15 |
11
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
16 |
12
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
17 |
15 16
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
18 |
13 14 17
|
f1eq123d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
19 |
10 18
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
20 |
5 19
|
rspcimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
21 |
9 20
|
mpd |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |