Step |
Hyp |
Ref |
Expression |
1 |
|
isfth.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isfth.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isfth.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
4 |
|
fthf1.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
5 |
|
fthf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
fthf1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
fthi.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
8 |
|
fthi.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑋 𝐻 𝑌 ) ) |
9 |
1 2 3 4 5 6
|
fthf1 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
10 |
|
f1fveq |
⊢ ( ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑆 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑆 ) ↔ 𝑅 = 𝑆 ) ) |
11 |
9 7 8 10
|
syl12anc |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑆 ) ↔ 𝑅 = 𝑆 ) ) |