Step |
Hyp |
Ref |
Expression |
1 |
|
fthsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
fthsect.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
fthsect.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
4 |
|
fthsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
fthsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
fthsect.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) |
7 |
|
fthsect.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 𝐻 𝑋 ) ) |
8 |
|
fthinv.s |
⊢ 𝐼 = ( Inv ‘ 𝐶 ) |
9 |
|
fthinv.t |
⊢ 𝐽 = ( Inv ‘ 𝐷 ) |
10 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Sect ‘ 𝐷 ) = ( Sect ‘ 𝐷 ) |
12 |
1 2 3 4 5 6 7 10 11
|
fthsect |
⊢ ( 𝜑 → ( 𝑀 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑁 ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) ) |
13 |
1 2 3 5 4 7 6 10 11
|
fthsect |
⊢ ( 𝜑 → ( 𝑁 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑀 ↔ ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑀 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑁 ∧ 𝑁 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑀 ) ↔ ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ∧ ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
15 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
16 |
15
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
18 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
20 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
23 |
1 8 22 4 5 10
|
isinv |
⊢ ( 𝜑 → ( 𝑀 ( 𝑋 𝐼 𝑌 ) 𝑁 ↔ ( 𝑀 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑁 ∧ 𝑁 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑀 ) ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
25 |
21
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
26 |
1 24 17
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
27 |
26 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
28 |
26 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
29 |
24 9 25 27 28 11
|
isinv |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ↔ ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ∧ ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
30 |
14 23 29
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑀 ( 𝑋 𝐼 𝑌 ) 𝑁 ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) ) |