| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fthsect.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							fthsect.h | 
							⊢ 𝐻  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							fthsect.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Faith  𝐷 ) 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							fthsect.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							fthsect.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							fthsect.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 𝑋 𝐻 𝑌 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fthsect.n | 
							⊢ ( 𝜑  →  𝑁  ∈  ( 𝑌 𝐻 𝑋 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fthinv.s | 
							⊢ 𝐼  =  ( Inv ‘ 𝐶 )  | 
						
						
							| 9 | 
							
								
							 | 
							fthinv.t | 
							⊢ 𝐽  =  ( Inv ‘ 𝐷 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( Sect ‘ 𝐶 )  =  ( Sect ‘ 𝐶 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Sect ‘ 𝐷 )  =  ( Sect ‘ 𝐷 )  | 
						
						
							| 12 | 
							
								1 2 3 4 5 6 7 10 11
							 | 
							fthsect | 
							⊢ ( 𝜑  →  ( 𝑀 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑁  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) )  | 
						
						
							| 13 | 
							
								1 2 3 5 4 7 6 10 11
							 | 
							fthsect | 
							⊢ ( 𝜑  →  ( 𝑁 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑀  ↔  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							anbi12d | 
							⊢ ( 𝜑  →  ( ( 𝑀 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑁  ∧  𝑁 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑀 )  ↔  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 )  ∧  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fthfunc | 
							⊢ ( 𝐶  Faith  𝐷 )  ⊆  ( 𝐶  Func  𝐷 )  | 
						
						
							| 16 | 
							
								15
							 | 
							ssbri | 
							⊢ ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 17 | 
							
								3 16
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 )  | 
						
						
							| 18 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylib | 
							⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							funcrcl | 
							⊢ ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 )  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 23 | 
							
								1 8 22 4 5 10
							 | 
							isinv | 
							⊢ ( 𝜑  →  ( 𝑀 ( 𝑋 𝐼 𝑌 ) 𝑁  ↔  ( 𝑀 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝑁  ∧  𝑁 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝑀 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 )  | 
						
						
							| 25 | 
							
								21
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 26 | 
							
								1 24 17
							 | 
							funcf1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) )  | 
						
						
							| 27 | 
							
								26 4
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 28 | 
							
								26 5
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑌 )  ∈  ( Base ‘ 𝐷 ) )  | 
						
						
							| 29 | 
							
								24 9 25 27 28 11
							 | 
							isinv | 
							⊢ ( 𝜑  →  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 )  ↔  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 )  ∧  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑌 ) ( Sect ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) )  | 
						
						
							| 30 | 
							
								14 23 29
							 | 
							3bitr4d | 
							⊢ ( 𝜑  →  ( 𝑀 ( 𝑋 𝐼 𝑌 ) 𝑁  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) )  |