| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fthmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
fthmon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
fthmon.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 4 |
|
fthmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
fthmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
fthmon.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 7 |
|
fthmon.m |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
| 8 |
|
fthmon.n |
⊢ 𝑁 = ( Mono ‘ 𝐷 ) |
| 9 |
|
fthmon.1 |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝑁 ( 𝐹 ‘ 𝑌 ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 11 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 12 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 13 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
| 14 |
13
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 15 |
3 14
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 16 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 17 |
15 16
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 18 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 20 |
19
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐷 ∈ Cat ) |
| 22 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 23 |
1 10 22
|
funcf1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 25 |
23 24
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 26 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 27 |
23 26
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
| 28 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 29 |
23 28
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 30 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝑁 ( 𝐹 ‘ 𝑌 ) ) ) |
| 31 |
1 2 11 22 28 24
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( 𝑧 𝐺 𝑋 ) : ( 𝑧 𝐻 𝑋 ) ⟶ ( ( 𝐹 ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 32 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ) |
| 33 |
31 32
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑓 ) ∈ ( ( 𝐹 ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 34 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) |
| 35 |
31 34
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑔 ) ∈ ( ( 𝐹 ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 36 |
10 11 12 8 21 25 27 29 30 33 35
|
moni |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑓 ) ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑔 ) ) ↔ ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑓 ) = ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑔 ) ) ) |
| 37 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 38 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 39 |
1 2 37 12 22 28 24 26 32 38
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑧 𝐺 𝑌 ) ‘ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑓 ) ) ) |
| 40 |
1 2 37 12 22 28 24 26 34 38
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑧 𝐺 𝑌 ) ‘ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑔 ) ) ) |
| 41 |
39 40
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( ( 𝑧 𝐺 𝑌 ) ‘ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) ) = ( ( 𝑧 𝐺 𝑌 ) ‘ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ↔ ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑓 ) ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑔 ) ) ) ) |
| 42 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 43 |
19
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
| 45 |
1 2 37 44 28 24 26 32 38
|
catcocl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) ∈ ( 𝑧 𝐻 𝑌 ) ) |
| 46 |
1 2 37 44 28 24 26 34 38
|
catcocl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ∈ ( 𝑧 𝐻 𝑌 ) ) |
| 47 |
1 2 11 42 28 26 45 46
|
fthi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( ( 𝑧 𝐺 𝑌 ) ‘ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) ) = ( ( 𝑧 𝐺 𝑌 ) ‘ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ↔ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) = ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
| 48 |
41 47
|
bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑓 ) ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑔 ) ) ↔ ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) = ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) ) |
| 49 |
1 2 11 42 28 24 32 34
|
fthi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑓 ) = ( ( 𝑧 𝐺 𝑋 ) ‘ 𝑔 ) ↔ 𝑓 = 𝑔 ) ) |
| 50 |
36 48 49
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) = ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ↔ 𝑓 = 𝑔 ) ) |
| 51 |
50
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ) ) → ( ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) = ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 52 |
51
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) = ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 53 |
1 2 37 7 43 4 5
|
ismon2 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑧 𝐻 𝑋 ) ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑓 ) = ( 𝑅 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) → 𝑓 = 𝑔 ) ) ) ) |
| 54 |
6 52 53
|
mpbir2and |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝑀 𝑌 ) ) |