| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulloppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fulloppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
fthoppc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 4 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
| 5 |
4
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 7 |
1 2 6
|
funcoppc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 10 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| 12 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 14 |
8 9 10 11 12 13
|
fthf1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1→ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 15 |
|
df-f1 |
⊢ ( ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1→ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ∧ Fun ◡ ( 𝑦 𝐺 𝑥 ) ) ) |
| 16 |
15
|
simprbi |
⊢ ( ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) –1-1→ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) → Fun ◡ ( 𝑦 𝐺 𝑥 ) ) |
| 17 |
14 16
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → Fun ◡ ( 𝑦 𝐺 𝑥 ) ) |
| 18 |
|
ovtpos |
⊢ ( 𝑥 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
| 19 |
18
|
cnveqi |
⊢ ◡ ( 𝑥 tpos 𝐺 𝑦 ) = ◡ ( 𝑦 𝐺 𝑥 ) |
| 20 |
19
|
funeqi |
⊢ ( Fun ◡ ( 𝑥 tpos 𝐺 𝑦 ) ↔ Fun ◡ ( 𝑦 𝐺 𝑥 ) ) |
| 21 |
17 20
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → Fun ◡ ( 𝑥 tpos 𝐺 𝑦 ) ) |
| 22 |
21
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 tpos 𝐺 𝑦 ) ) |
| 23 |
1 8
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 24 |
23
|
isfth |
⊢ ( 𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 ↔ ( 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 tpos 𝐺 𝑦 ) ) ) |
| 25 |
7 22 24
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Faith 𝑃 ) tpos 𝐺 ) |