Step |
Hyp |
Ref |
Expression |
1 |
|
fullpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
2 |
|
fullpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
3 |
|
fullpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
4 |
|
fullpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
5 |
|
fullpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
fullpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
7 |
|
fullpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
8 |
|
fullpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
9 |
|
relfth |
⊢ Rel ( 𝐴 Faith 𝐶 ) |
10 |
|
relfth |
⊢ Rel ( 𝐵 Faith 𝐷 ) |
11 |
1 2 3 4 5 6 7 8
|
funcpropd |
⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
12 |
11
|
breqd |
⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ) ) |
13 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
14 |
13
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
15 |
13 14
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
16 |
12 15
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
18 |
17
|
isfth |
⊢ ( 𝑓 ( 𝐴 Faith 𝐶 ) 𝑔 ↔ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
20 |
19
|
isfth |
⊢ ( 𝑓 ( 𝐵 Faith 𝐷 ) 𝑔 ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
21 |
16 18 20
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Faith 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Faith 𝐷 ) 𝑔 ) ) |
22 |
9 10 21
|
eqbrrdiv |
⊢ ( 𝜑 → ( 𝐴 Faith 𝐶 ) = ( 𝐵 Faith 𝐷 ) ) |