Step |
Hyp |
Ref |
Expression |
1 |
|
relfth |
⊢ Rel ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) |
2 |
1
|
a1i |
⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → Rel ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) ) |
3 |
|
funcres2 |
⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) ⊆ ( 𝐶 Func 𝐷 ) ) |
4 |
3
|
ssbrd |
⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) ) |
5 |
4
|
anim1d |
⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) → ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
6
|
isfth |
⊢ ( 𝑓 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ↔ ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
8 |
6
|
isfth |
⊢ ( 𝑓 ( 𝐶 Faith 𝐷 ) 𝑔 ↔ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
9 |
5 7 8
|
3imtr4g |
⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝑓 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝑔 → 𝑓 ( 𝐶 Faith 𝐷 ) 𝑔 ) ) |
10 |
|
df-br |
⊢ ( 𝑓 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) ) |
11 |
|
df-br |
⊢ ( 𝑓 ( 𝐶 Faith 𝐷 ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith 𝐷 ) ) |
12 |
9 10 11
|
3imtr3g |
⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) → 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Faith 𝐷 ) ) ) |
13 |
2 12
|
relssdv |
⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) ⊆ ( 𝐶 Faith 𝐷 ) ) |