Step |
Hyp |
Ref |
Expression |
1 |
|
fthres2b.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
2 |
|
fthres2b.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
fthres2b.r |
⊢ ( 𝜑 → 𝑅 ∈ ( Subcat ‘ 𝐷 ) ) |
4 |
|
fthres2b.s |
⊢ ( 𝜑 → 𝑅 Fn ( 𝑆 × 𝑆 ) ) |
5 |
|
fthres2b.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
6 |
|
fthres2b.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : 𝑌 ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) |
7 |
1 2 3 4 5 6
|
funcres2b |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ) ) |
8 |
7
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ↔ ( 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) ) |
9 |
1
|
isfth |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
10 |
1
|
isfth |
⊢ ( 𝐹 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
11 |
8 9 10
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Faith ( 𝐷 ↾cat 𝑅 ) ) 𝐺 ) ) |