| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fthres2b.a | 
							⊢ 𝐴  =  ( Base ‘ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							fthres2b.h | 
							⊢ 𝐻  =  ( Hom  ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							fthres2b.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( Subcat ‘ 𝐷 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fthres2b.s | 
							⊢ ( 𝜑  →  𝑅  Fn  ( 𝑆  ×  𝑆 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fthres2b.1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 )  | 
						
						
							| 6 | 
							
								
							 | 
							fthres2b.2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥 𝐺 𝑦 ) : 𝑌 ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) )  | 
						
						
							| 7 | 
							
								1 2 3 4 5 6
							 | 
							funcres2b | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  𝐹 ( 𝐶  Func  ( 𝐷  ↾cat  𝑅 ) ) 𝐺 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi1d | 
							⊢ ( 𝜑  →  ( ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) )  ↔  ( 𝐹 ( 𝐶  Func  ( 𝐷  ↾cat  𝑅 ) ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) ) ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							isfth | 
							⊢ ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  ↔  ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) ) )  | 
						
						
							| 10 | 
							
								1
							 | 
							isfth | 
							⊢ ( 𝐹 ( 𝐶  Faith  ( 𝐷  ↾cat  𝑅 ) ) 𝐺  ↔  ( 𝐹 ( 𝐶  Func  ( 𝐷  ↾cat  𝑅 ) ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3bitr4g | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  ↔  𝐹 ( 𝐶  Faith  ( 𝐷  ↾cat  𝑅 ) ) 𝐺 ) )  |