Metamath Proof Explorer


Theorem fthres2c

Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses fthres2c.a 𝐴 = ( Base ‘ 𝐶 )
fthres2c.e 𝐸 = ( 𝐷s 𝑆 )
fthres2c.d ( 𝜑𝐷 ∈ Cat )
fthres2c.r ( 𝜑𝑆𝑉 )
fthres2c.1 ( 𝜑𝐹 : 𝐴𝑆 )
Assertion fthres2c ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) )

Proof

Step Hyp Ref Expression
1 fthres2c.a 𝐴 = ( Base ‘ 𝐶 )
2 fthres2c.e 𝐸 = ( 𝐷s 𝑆 )
3 fthres2c.d ( 𝜑𝐷 ∈ Cat )
4 fthres2c.r ( 𝜑𝑆𝑉 )
5 fthres2c.1 ( 𝜑𝐹 : 𝐴𝑆 )
6 1 2 3 4 5 funcres2c ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) )
7 6 anbi1d ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) ) )
8 1 isfth ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) )
9 1 isfth ( 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) )
10 7 8 9 3bitr4g ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) )