| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fthres2c.a | 
							⊢ 𝐴  =  ( Base ‘ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							fthres2c.e | 
							⊢ 𝐸  =  ( 𝐷  ↾s  𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							fthres2c.d | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							fthres2c.r | 
							⊢ ( 𝜑  →  𝑆  ∈  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							fthres2c.1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							funcres2c | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  𝐹 ( 𝐶  Func  𝐸 ) 𝐺 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							anbi1d | 
							⊢ ( 𝜑  →  ( ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) )  ↔  ( 𝐹 ( 𝐶  Func  𝐸 ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) ) ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							isfth | 
							⊢ ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  ↔  ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							isfth | 
							⊢ ( 𝐹 ( 𝐶  Faith  𝐸 ) 𝐺  ↔  ( 𝐹 ( 𝐶  Func  𝐸 ) 𝐺  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 Fun  ◡ ( 𝑥 𝐺 𝑦 ) ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							3bitr4g | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  ↔  𝐹 ( 𝐶  Faith  𝐸 ) 𝐺 ) )  |