Step |
Hyp |
Ref |
Expression |
1 |
|
fthres2c.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
2 |
|
fthres2c.e |
⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) |
3 |
|
fthres2c.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
4 |
|
fthres2c.r |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
5 |
|
fthres2c.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
6 |
1 2 3 4 5
|
funcres2c |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) ) |
8 |
1
|
isfth |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
9 |
1
|
isfth |
⊢ ( 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Faith 𝐸 ) 𝐺 ) ) |