Step |
Hyp |
Ref |
Expression |
1 |
|
fthsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
fthsect.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
fthsect.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
4 |
|
fthsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
fthsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
fthsect.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) |
7 |
|
fthsect.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 𝐻 𝑋 ) ) |
8 |
|
fthsect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
9 |
|
fthsect.t |
⊢ 𝑇 = ( Sect ‘ 𝐷 ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
11 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
12 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
13 |
12
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
15 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
17 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
20 |
1 2 11 19 4 5 4 6 7
|
catcocl |
⊢ ( 𝜑 → ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑀 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
21 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
22 |
1 2 21 19 4
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
23 |
1 2 10 3 4 4 20 22
|
fthi |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑀 ) ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑀 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
24 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
25 |
1 2 11 24 14 4 5 4 6 7
|
funcco |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |
26 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
27 |
1 21 26 14 4
|
funcid |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
28 |
25 27
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑀 ) ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
29 |
23 28
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑀 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ↔ ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
30 |
1 2 11 21 8 19 4 5 6 7
|
issect2 |
⊢ ( 𝜑 → ( 𝑀 ( 𝑋 𝑆 𝑌 ) 𝑁 ↔ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑀 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
32 |
18
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
33 |
1 31 14
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
34 |
33 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
35 |
33 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) ) |
36 |
1 2 10 14 4 5
|
funcf2 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
37 |
36 6
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) |
38 |
1 2 10 14 5 4
|
funcf2 |
⊢ ( 𝜑 → ( 𝑌 𝐺 𝑋 ) : ( 𝑌 𝐻 𝑋 ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
39 |
38 7
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) |
40 |
31 10 24 26 9 32 34 35 37 39
|
issect2 |
⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝑇 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ↔ ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
41 |
29 30 40
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑀 ( 𝑋 𝑆 𝑌 ) 𝑁 ↔ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝑇 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) ) |