Step |
Hyp |
Ref |
Expression |
1 |
|
fucbas.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
2 |
|
eqid |
⊢ ( 𝐶 Func 𝐷 ) = ( 𝐶 Func 𝐷 ) |
3 |
|
eqid |
⊢ ( 𝐶 Nat 𝐷 ) = ( 𝐶 Nat 𝐷 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
5 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
6 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐶 ∈ Cat ) |
7 |
|
simpr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat ) |
8 |
|
eqid |
⊢ ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 ) |
9 |
1 2 3 4 5 6 7 8
|
fuccofval |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( comp ‘ 𝑄 ) = ( 𝑣 ∈ ( ( 𝐶 Func 𝐷 ) × ( 𝐶 Func 𝐷 ) ) , ℎ ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 ( 𝐶 Nat 𝐷 ) ℎ ) , 𝑎 ∈ ( 𝑓 ( 𝐶 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
10 |
1 2 3 4 5 6 7 9
|
fucval |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝑄 = { 〈 ( Base ‘ ndx ) , ( 𝐶 Func 𝐷 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝐶 Nat 𝐷 ) 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ 𝑄 ) 〉 } ) |
11 |
|
catstr |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝐶 Func 𝐷 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝐶 Nat 𝐷 ) 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ 𝑄 ) 〉 } Struct 〈 1 , ; 1 5 〉 |
12 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
13 |
|
snsstp1 |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝐶 Func 𝐷 ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , ( 𝐶 Func 𝐷 ) 〉 , 〈 ( Hom ‘ ndx ) , ( 𝐶 Nat 𝐷 ) 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ 𝑄 ) 〉 } |
14 |
|
ovexd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Func 𝐷 ) ∈ V ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
16 |
10 11 12 13 14 15
|
strfv3 |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( Base ‘ 𝑄 ) = ( 𝐶 Func 𝐷 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) ) |
18 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
19 |
|
funcrcl |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
20 |
19
|
con3i |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ¬ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
21 |
20
|
eq0rdv |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Func 𝐷 ) = ∅ ) |
22 |
|
fnfuc |
⊢ FuncCat Fn ( Cat × Cat ) |
23 |
22
|
fndmi |
⊢ dom FuncCat = ( Cat × Cat ) |
24 |
23
|
ndmov |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 FuncCat 𝐷 ) = ∅ ) |
25 |
1 24
|
eqtrid |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝑄 = ∅ ) |
26 |
25
|
fveq2d |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( Base ‘ 𝑄 ) = ( Base ‘ ∅ ) ) |
27 |
18 21 26
|
3eqtr4a |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) ) |
28 |
17 27
|
pm2.61i |
⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) |