Metamath Proof Explorer
		
		
		
		Description:  The functor category is a category.  Remark 6.16 in Adamek p. 88.
       (Contributed by Mario Carneiro, 6-Jan-2017)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						fuccat.q | 
						⊢ 𝑄  =  ( 𝐶  FuncCat  𝐷 )  | 
					
					
						 | 
						 | 
						fuccat.r | 
						⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
					
					
						 | 
						 | 
						fuccat.s | 
						⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
					
				
					 | 
					Assertion | 
					fuccat | 
					⊢  ( 𝜑  →  𝑄  ∈  Cat )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuccat.q | 
							⊢ 𝑄  =  ( 𝐶  FuncCat  𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuccat.r | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 3 | 
							
								
							 | 
							fuccat.s | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( Id ‘ 𝐷 )  =  ( Id ‘ 𝐷 )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							fuccatid | 
							⊢ ( 𝜑  →  ( 𝑄  ∈  Cat  ∧  ( Id ‘ 𝑄 )  =  ( 𝑓  ∈  ( 𝐶  Func  𝐷 )  ↦  ( ( Id ‘ 𝐷 )  ∘  ( 1st  ‘ 𝑓 ) ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑄  ∈  Cat )  |