Metamath Proof Explorer
Description: The functor category is a category. Remark 6.16 in Adamek p. 88.
(Contributed by Mario Carneiro, 6-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
fuccat.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
|
|
fuccat.r |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
|
|
fuccat.s |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
|
Assertion |
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fuccat.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
2 |
|
fuccat.r |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
3 |
|
fuccat.s |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
4 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
5 |
1 2 3 4
|
fuccatid |
⊢ ( 𝜑 → ( 𝑄 ∈ Cat ∧ ( Id ‘ 𝑄 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ↦ ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑓 ) ) ) ) ) |
6 |
5
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |