| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fuccat.q | 
							⊢ 𝑄  =  ( 𝐶  FuncCat  𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							fuccat.r | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 3 | 
							
								
							 | 
							fuccat.s | 
							⊢ ( 𝜑  →  𝐷  ∈  Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							fuccatid.1 | 
							⊢  1   =  ( Id ‘ 𝐷 )  | 
						
						
							| 5 | 
							
								1
							 | 
							fucbas | 
							⊢ ( 𝐶  Func  𝐷 )  =  ( Base ‘ 𝑄 )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐶  Func  𝐷 )  =  ( Base ‘ 𝑄 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( 𝐶  Nat  𝐷 )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							fuchom | 
							⊢ ( 𝐶  Nat  𝐷 )  =  ( Hom  ‘ 𝑄 )  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐶  Nat  𝐷 )  =  ( Hom  ‘ 𝑄 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( comp ‘ 𝑄 )  =  ( comp ‘ 𝑄 ) )  | 
						
						
							| 11 | 
							
								1
							 | 
							ovexi | 
							⊢ 𝑄  ∈  V  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑄  ∈  V )  | 
						
						
							| 13 | 
							
								
							 | 
							biid | 
							⊢ ( ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) )  ↔  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  →  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  | 
						
						
							| 15 | 
							
								1 7 4 14
							 | 
							fucidcl | 
							⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  →  (  1   ∘  ( 1st  ‘ 𝑓 ) )  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑓 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝑄 )  =  ( comp ‘ 𝑄 )  | 
						
						
							| 17 | 
							
								
							 | 
							simpr31 | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  →  𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 ) )  | 
						
						
							| 18 | 
							
								1 7 16 4 17
							 | 
							fuclid | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  →  ( (  1   ∘  ( 1st  ‘ 𝑓 ) ) ( 〈 𝑒 ,  𝑓 〉 ( comp ‘ 𝑄 ) 𝑓 ) 𝑟 )  =  𝑟 )  | 
						
						
							| 19 | 
							
								
							 | 
							simpr32 | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  →  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 ) )  | 
						
						
							| 20 | 
							
								1 7 16 4 19
							 | 
							fucrid | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  →  ( 𝑠 ( 〈 𝑓 ,  𝑓 〉 ( comp ‘ 𝑄 ) 𝑔 ) (  1   ∘  ( 1st  ‘ 𝑓 ) ) )  =  𝑠 )  | 
						
						
							| 21 | 
							
								1 7 16 17 19
							 | 
							fuccocl | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  →  ( 𝑠 ( 〈 𝑒 ,  𝑓 〉 ( comp ‘ 𝑄 ) 𝑔 ) 𝑟 )  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑔 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr33 | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  →  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) )  | 
						
						
							| 23 | 
							
								1 7 16 17 19 22
							 | 
							fucass | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑒  ∈  ( 𝐶  Func  𝐷 )  ∧  𝑓  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑔  ∈  ( 𝐶  Func  𝐷 )  ∧  ℎ  ∈  ( 𝐶  Func  𝐷 ) )  ∧  ( 𝑟  ∈  ( 𝑒 ( 𝐶  Nat  𝐷 ) 𝑓 )  ∧  𝑠  ∈  ( 𝑓 ( 𝐶  Nat  𝐷 ) 𝑔 )  ∧  𝑡  ∈  ( 𝑔 ( 𝐶  Nat  𝐷 ) ℎ ) ) ) )  →  ( ( 𝑡 ( 〈 𝑓 ,  𝑔 〉 ( comp ‘ 𝑄 ) ℎ ) 𝑠 ) ( 〈 𝑒 ,  𝑓 〉 ( comp ‘ 𝑄 ) ℎ ) 𝑟 )  =  ( 𝑡 ( 〈 𝑒 ,  𝑔 〉 ( comp ‘ 𝑄 ) ℎ ) ( 𝑠 ( 〈 𝑒 ,  𝑓 〉 ( comp ‘ 𝑄 ) 𝑔 ) 𝑟 ) ) )  | 
						
						
							| 24 | 
							
								6 9 10 12 13 15 18 20 21 23
							 | 
							iscatd2 | 
							⊢ ( 𝜑  →  ( 𝑄  ∈  Cat  ∧  ( Id ‘ 𝑄 )  =  ( 𝑓  ∈  ( 𝐶  Func  𝐷 )  ↦  (  1   ∘  ( 1st  ‘ 𝑓 ) ) ) ) )  |