Metamath Proof Explorer


Theorem fuccocl

Description: The composition of two natural transformations is a natural transformation. Remark 6.14(a) in Adamek p. 87. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fuccocl.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
fuccocl.n 𝑁 = ( 𝐶 Nat 𝐷 )
fuccocl.x = ( comp ‘ 𝑄 )
fuccocl.r ( 𝜑𝑅 ∈ ( 𝐹 𝑁 𝐺 ) )
fuccocl.s ( 𝜑𝑆 ∈ ( 𝐺 𝑁 𝐻 ) )
Assertion fuccocl ( 𝜑 → ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ∈ ( 𝐹 𝑁 𝐻 ) )

Proof

Step Hyp Ref Expression
1 fuccocl.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
2 fuccocl.n 𝑁 = ( 𝐶 Nat 𝐷 )
3 fuccocl.x = ( comp ‘ 𝑄 )
4 fuccocl.r ( 𝜑𝑅 ∈ ( 𝐹 𝑁 𝐺 ) )
5 fuccocl.s ( 𝜑𝑆 ∈ ( 𝐺 𝑁 𝐻 ) )
6 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
7 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
8 1 2 6 7 3 4 5 fucco ( 𝜑 → ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ) )
9 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
10 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
11 2 natrcl ( 𝑅 ∈ ( 𝐹 𝑁 𝐺 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) )
12 4 11 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) )
13 12 simpld ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
14 funcrcl ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
15 13 14 syl ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
16 15 simprd ( 𝜑𝐷 ∈ Cat )
17 16 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat )
18 relfunc Rel ( 𝐶 Func 𝐷 )
19 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
20 18 13 19 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
21 6 9 20 funcf1 ( 𝜑 → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
22 21 ffvelrnda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
23 2 natrcl ( 𝑆 ∈ ( 𝐺 𝑁 𝐻 ) → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐻 ∈ ( 𝐶 Func 𝐷 ) ) )
24 5 23 syl ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐻 ∈ ( 𝐶 Func 𝐷 ) ) )
25 24 simpld ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
26 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
27 18 25 26 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
28 6 9 27 funcf1 ( 𝜑 → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
29 28 ffvelrnda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
30 24 simprd ( 𝜑𝐻 ∈ ( 𝐶 Func 𝐷 ) )
31 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐻 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐻 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐻 ) )
32 18 30 31 sylancr ( 𝜑 → ( 1st𝐻 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐻 ) )
33 6 9 32 funcf1 ( 𝜑 → ( 1st𝐻 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
34 33 ffvelrnda ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐻 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
35 2 4 nat1st2nd ( 𝜑𝑅 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ 𝑁 ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ) )
36 35 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ 𝑁 ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ) )
37 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
38 2 36 6 10 37 natcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑅𝑥 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) )
39 2 5 nat1st2nd ( 𝜑𝑆 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ 𝑁 ⟨ ( 1st𝐻 ) , ( 2nd𝐻 ) ⟩ ) )
40 39 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ 𝑁 ⟨ ( 1st𝐻 ) , ( 2nd𝐻 ) ⟩ ) )
41 2 40 6 10 37 natcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑆𝑥 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
42 9 10 7 17 22 29 34 38 41 catcocl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
43 42 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
44 fvex ( Base ‘ 𝐶 ) ∈ V
45 mptelixpg ( ( Base ‘ 𝐶 ) ∈ V → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ) ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ) )
46 44 45 ax-mp ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ) ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
47 43 46 sylibr ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ) ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
48 8 47 eqeltrd ( 𝜑 → ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
49 16 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝐷 ∈ Cat )
50 21 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
51 simpr1 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
52 50 51 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
53 simpr2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
54 50 53 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) )
55 28 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
56 55 53 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 1st𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) )
57 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
58 20 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
59 6 57 10 58 51 53 funcf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
60 simpr3 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
61 59 60 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
62 35 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑅 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ 𝑁 ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ) )
63 2 62 6 10 53 natcl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑅𝑦 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) )
64 33 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 1st𝐻 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
65 64 53 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 1st𝐻 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) )
66 39 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑆 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ 𝑁 ⟨ ( 1st𝐻 ) , ( 2nd𝐻 ) ⟩ ) )
67 2 66 6 10 53 natcl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑆𝑦 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) )
68 9 10 7 49 52 54 56 61 63 65 67 catass ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑦 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑅𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) ) )
69 2 62 6 57 7 51 53 60 nati ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑅𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 ( 2nd𝐺 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) )
70 69 oveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑅𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) ) = ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( ( 𝑥 ( 2nd𝐺 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) ) )
71 55 51 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 1st𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
72 2 62 6 10 51 natcl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑅𝑥 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) )
73 27 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
74 6 57 10 73 51 53 funcf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑥 ( 2nd𝐺 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) )
75 74 60 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑥 ( 2nd𝐺 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) )
76 9 10 7 49 52 71 56 72 75 65 67 catass ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐺 ) 𝑦 ) ‘ 𝑓 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) = ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( ( 𝑥 ( 2nd𝐺 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) ) )
77 2 66 6 57 7 51 53 60 nati ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐺 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑆𝑥 ) ) )
78 77 oveq1d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐺 ) 𝑦 ) ‘ 𝑓 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) = ( ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑆𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) )
79 70 76 78 3eqtr2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑅𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) ) = ( ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑆𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) )
80 64 51 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 1st𝐻 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
81 2 66 6 10 51 natcl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑆𝑥 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) )
82 32 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 1st𝐻 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐻 ) )
83 6 57 10 82 51 53 funcf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑥 ( 2nd𝐻 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) )
84 83 60 ffvelrnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st𝐻 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) )
85 9 10 7 49 52 71 80 72 81 65 84 catass ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑆𝑥 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑥 ) ) = ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ) )
86 68 79 85 3eqtrd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑦 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ) )
87 4 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑅 ∈ ( 𝐹 𝑁 𝐺 ) )
88 5 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑆 ∈ ( 𝐺 𝑁 𝐻 ) )
89 1 2 6 7 3 87 88 53 fuccoval ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑦 ) = ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑦 ) ) )
90 89 oveq1d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑆𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( 𝑅𝑦 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) )
91 1 2 6 7 3 87 88 51 fuccoval ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑥 ) = ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) )
92 91 oveq2d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑆𝑥 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐺 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ( 𝑅𝑥 ) ) ) )
93 86 90 92 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑥 ) ) )
94 93 ralrimivvva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑥 ) ) )
95 2 6 57 10 7 13 30 isnat2 ( 𝜑 → ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ∈ ( 𝐹 𝑁 𝐻 ) ↔ ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ∈ X 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑦 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 ( 2nd𝐻 ) 𝑦 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑥 ) , ( ( 1st𝐻 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑦 ) ) ( ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ‘ 𝑥 ) ) ) ) )
96 48 94 95 mpbir2and ( 𝜑 → ( 𝑆 ( ⟨ 𝐹 , 𝐺 𝐻 ) 𝑅 ) ∈ ( 𝐹 𝑁 𝐻 ) )