Step |
Hyp |
Ref |
Expression |
1 |
|
fucval.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
2 |
|
fucval.b |
⊢ 𝐵 = ( 𝐶 Func 𝐷 ) |
3 |
|
fucval.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
4 |
|
fucval.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
5 |
|
fucval.o |
⊢ · = ( comp ‘ 𝐷 ) |
6 |
|
fucval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
7 |
|
fucval.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
8 |
|
fuccofval.x |
⊢ ∙ = ( comp ‘ 𝑄 ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
10 |
1 2 3 4 5 6 7 9
|
fucval |
⊢ ( 𝜑 → 𝑄 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( comp ‘ 𝑄 ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
12 |
2
|
ovexi |
⊢ 𝐵 ∈ V |
13 |
12 12
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
14 |
13 12
|
mpoex |
⊢ ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ∈ V |
15 |
|
catstr |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } Struct 〈 1 , ; 1 5 〉 |
16 |
|
ccoid |
⊢ comp = Slot ( comp ‘ ndx ) |
17 |
|
snsstp3 |
⊢ { 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } |
18 |
15 16 17
|
strfv |
⊢ ( ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ∈ V → ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
19 |
14 18
|
ax-mp |
⊢ ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
20 |
11 8 19
|
3eqtr4g |
⊢ ( 𝜑 → ∙ = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |