Metamath Proof Explorer


Theorem fucpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses fucpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
fucpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
fucpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
fucpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
fucpropd.a ( 𝜑𝐴 ∈ Cat )
fucpropd.b ( 𝜑𝐵 ∈ Cat )
fucpropd.c ( 𝜑𝐶 ∈ Cat )
fucpropd.d ( 𝜑𝐷 ∈ Cat )
Assertion fucpropd ( 𝜑 → ( 𝐴 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐷 ) )

Proof

Step Hyp Ref Expression
1 fucpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
2 fucpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
3 fucpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
4 fucpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
5 fucpropd.a ( 𝜑𝐴 ∈ Cat )
6 fucpropd.b ( 𝜑𝐵 ∈ Cat )
7 fucpropd.c ( 𝜑𝐶 ∈ Cat )
8 fucpropd.d ( 𝜑𝐷 ∈ Cat )
9 1 2 3 4 5 6 7 8 funcpropd ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )
10 9 opeq2d ( 𝜑 → ⟨ ( Base ‘ ndx ) , ( 𝐴 Func 𝐶 ) ⟩ = ⟨ ( Base ‘ ndx ) , ( 𝐵 Func 𝐷 ) ⟩ )
11 1 2 3 4 5 6 7 8 natpropd ( 𝜑 → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) )
12 11 opeq2d ( 𝜑 → ⟨ ( Hom ‘ ndx ) , ( 𝐴 Nat 𝐶 ) ⟩ = ⟨ ( Hom ‘ ndx ) , ( 𝐵 Nat 𝐷 ) ⟩ )
13 9 sqxpeqd ( 𝜑 → ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) = ( ( 𝐵 Func 𝐷 ) × ( 𝐵 Func 𝐷 ) ) )
14 9 adantr ( ( 𝜑𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ) → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )
15 nfv 𝑓 ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) )
16 nfcsb1v 𝑓 ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) )
17 16 a1i ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝑓 ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
18 fvexd ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 1st𝑣 ) ∈ V )
19 nfv 𝑔 ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) )
20 nfcsb1v 𝑔 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) )
21 20 a1i ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) → 𝑔 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
22 fvexd ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) → ( 2nd𝑣 ) ∈ V )
23 11 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) )
24 23 oveqd ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) → ( 𝑔 ( 𝐴 Nat 𝐶 ) ) = ( 𝑔 ( 𝐵 Nat 𝐷 ) ) )
25 23 oveqdr ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ) → ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) = ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) )
26 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
27 26 ad4antr ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
28 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
29 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
30 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
31 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
32 3 ad5antr ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
33 4 ad5antr ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
34 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
35 relfunc Rel ( 𝐴 Func 𝐶 )
36 simpllr ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → 𝑓 = ( 1st𝑣 ) )
37 simp-4r ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) )
38 37 simpld ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) )
39 xp1st ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) → ( 1st𝑣 ) ∈ ( 𝐴 Func 𝐶 ) )
40 38 39 syl ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 1st𝑣 ) ∈ ( 𝐴 Func 𝐶 ) )
41 36 40 eqeltrd ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) )
42 1st2ndbr ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
43 35 41 42 sylancr ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 1st𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
44 34 28 43 funcf1 ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 1st𝑓 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
45 44 ffvelrnda ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) )
46 simplr ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → 𝑔 = ( 2nd𝑣 ) )
47 xp2nd ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) → ( 2nd𝑣 ) ∈ ( 𝐴 Func 𝐶 ) )
48 38 47 syl ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 2nd𝑣 ) ∈ ( 𝐴 Func 𝐶 ) )
49 46 48 eqeltrd ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → 𝑔 ∈ ( 𝐴 Func 𝐶 ) )
50 1st2ndbr ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑔 ) )
51 35 49 50 sylancr ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 1st𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑔 ) )
52 34 28 51 funcf1 ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 1st𝑔 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
53 52 ffvelrnda ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st𝑔 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) )
54 37 simprd ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ∈ ( 𝐴 Func 𝐶 ) )
55 1st2ndbr ( ( Rel ( 𝐴 Func 𝐶 ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st ) ( 𝐴 Func 𝐶 ) ( 2nd ) )
56 35 54 55 sylancr ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 1st ) ( 𝐴 Func 𝐶 ) ( 2nd ) )
57 34 28 56 funcf1 ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 1st ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
58 57 ffvelrnda ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) )
59 eqid ( 𝐴 Nat 𝐶 ) = ( 𝐴 Nat 𝐶 )
60 simplrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) )
61 59 60 nat1st2nd ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑎 ∈ ( ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ ( 𝐴 Nat 𝐶 ) ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ) )
62 simpr ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) )
63 59 61 34 29 62 natcl ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑎𝑥 ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st𝑔 ) ‘ 𝑥 ) ) )
64 simplrl ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) )
65 59 64 nat1st2nd ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑏 ∈ ( ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ ( 𝐴 Nat 𝐶 ) ⟨ ( 1st ) , ( 2nd ) ⟩ ) )
66 59 65 34 29 62 natcl ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑏𝑥 ) ∈ ( ( ( 1st𝑔 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) )
67 28 29 30 31 32 33 45 53 58 63 66 comfeqval ( ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) = ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) )
68 27 67 mpteq12dva ( ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) ∧ ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) ∧ 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) )
69 24 25 68 mpoeq123dva ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) → ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
70 csbeq1a ( 𝑔 = ( 2nd𝑣 ) → ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
71 70 adantl ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) → ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
72 69 71 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) ∧ 𝑔 = ( 2nd𝑣 ) ) → ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
73 19 21 22 72 csbiedf ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) → ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
74 csbeq1a ( 𝑓 = ( 1st𝑣 ) → ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
75 74 adantl ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) → ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
76 73 75 eqtrd ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑓 = ( 1st𝑣 ) ) → ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
77 15 17 18 76 csbiedf ( ( 𝜑 ∧ ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) ∧ ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) = ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) )
78 13 14 77 mpoeq123dva ( 𝜑 → ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) , ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) = ( 𝑣 ∈ ( ( 𝐵 Func 𝐷 ) × ( 𝐵 Func 𝐷 ) ) , ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) )
79 78 opeq2d ( 𝜑 → ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) , ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ = ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝐵 Func 𝐷 ) × ( 𝐵 Func 𝐷 ) ) , ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ )
80 10 12 79 tpeq123d ( 𝜑 → { ⟨ ( Base ‘ ndx ) , ( 𝐴 Func 𝐶 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝐴 Nat 𝐶 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) , ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ } = { ⟨ ( Base ‘ ndx ) , ( 𝐵 Func 𝐷 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝐵 Nat 𝐷 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝐵 Func 𝐷 ) × ( 𝐵 Func 𝐷 ) ) , ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ } )
81 eqid ( 𝐴 FuncCat 𝐶 ) = ( 𝐴 FuncCat 𝐶 )
82 eqid ( 𝐴 Func 𝐶 ) = ( 𝐴 Func 𝐶 )
83 eqidd ( 𝜑 → ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) , ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) = ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) , ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) )
84 81 82 59 34 30 5 7 83 fucval ( 𝜑 → ( 𝐴 FuncCat 𝐶 ) = { ⟨ ( Base ‘ ndx ) , ( 𝐴 Func 𝐶 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝐴 Nat 𝐶 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝐴 Func 𝐶 ) × ( 𝐴 Func 𝐶 ) ) , ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐴 Nat 𝐶 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐴 Nat 𝐶 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ } )
85 eqid ( 𝐵 FuncCat 𝐷 ) = ( 𝐵 FuncCat 𝐷 )
86 eqid ( 𝐵 Func 𝐷 ) = ( 𝐵 Func 𝐷 )
87 eqid ( 𝐵 Nat 𝐷 ) = ( 𝐵 Nat 𝐷 )
88 eqid ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 )
89 eqidd ( 𝜑 → ( 𝑣 ∈ ( ( 𝐵 Func 𝐷 ) × ( 𝐵 Func 𝐷 ) ) , ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) = ( 𝑣 ∈ ( ( 𝐵 Func 𝐷 ) × ( 𝐵 Func 𝐷 ) ) , ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) )
90 85 86 87 88 31 6 8 89 fucval ( 𝜑 → ( 𝐵 FuncCat 𝐷 ) = { ⟨ ( Base ‘ ndx ) , ( 𝐵 Func 𝐷 ) ⟩ , ⟨ ( Hom ‘ ndx ) , ( 𝐵 Nat 𝐷 ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑣 ∈ ( ( 𝐵 Func 𝐷 ) × ( 𝐵 Func 𝐷 ) ) , ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑣 ) / 𝑓 ( 2nd𝑣 ) / 𝑔 ( 𝑏 ∈ ( 𝑔 ( 𝐵 Nat 𝐷 ) ) , 𝑎 ∈ ( 𝑓 ( 𝐵 Nat 𝐷 ) 𝑔 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ↦ ( ( 𝑏𝑥 ) ( ⟨ ( ( 1st𝑓 ) ‘ 𝑥 ) , ( ( 1st𝑔 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st ) ‘ 𝑥 ) ) ( 𝑎𝑥 ) ) ) ) ) ⟩ } )
91 80 84 90 3eqtr4d ( 𝜑 → ( 𝐴 FuncCat 𝐶 ) = ( 𝐵 FuncCat 𝐷 ) )