Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 Full 𝑑 ) = ( 𝐶 Full 𝑑 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 Func 𝑑 ) = ( 𝐶 Func 𝑑 ) ) |
3 |
1 2
|
sseq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 Full 𝑑 ) ⊆ ( 𝑐 Func 𝑑 ) ↔ ( 𝐶 Full 𝑑 ) ⊆ ( 𝐶 Func 𝑑 ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝐶 Full 𝑑 ) = ( 𝐶 Full 𝐷 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑑 = 𝐷 → ( 𝐶 Func 𝑑 ) = ( 𝐶 Func 𝐷 ) ) |
6 |
4 5
|
sseq12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝐶 Full 𝑑 ) ⊆ ( 𝐶 Func 𝑑 ) ↔ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) ) ) |
7 |
|
ovex |
⊢ ( 𝑐 Func 𝑑 ) ∈ V |
8 |
|
simpl |
⊢ ( ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) → 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ) |
9 |
8
|
ssopab2i |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ⊆ { 〈 𝑓 , 𝑔 〉 ∣ 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 } |
10 |
|
opabss |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 } ⊆ ( 𝑐 Func 𝑑 ) |
11 |
9 10
|
sstri |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ⊆ ( 𝑐 Func 𝑑 ) |
12 |
7 11
|
ssexi |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V |
13 |
|
df-full |
⊢ Full = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
14 |
13
|
ovmpt4g |
⊢ ( ( 𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V ) → ( 𝑐 Full 𝑑 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
15 |
12 14
|
mp3an3 |
⊢ ( ( 𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ) → ( 𝑐 Full 𝑑 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝑑 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
16 |
15 11
|
eqsstrdi |
⊢ ( ( 𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ) → ( 𝑐 Full 𝑑 ) ⊆ ( 𝑐 Func 𝑑 ) ) |
17 |
3 6 16
|
vtocl2ga |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) ) |
18 |
13
|
mpondm0 |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Full 𝐷 ) = ∅ ) |
19 |
|
0ss |
⊢ ∅ ⊆ ( 𝐶 Func 𝐷 ) |
20 |
18 19
|
eqsstrdi |
⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) ) |
21 |
17 20
|
pm2.61i |
⊢ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |