Step |
Hyp |
Ref |
Expression |
1 |
|
isfull.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isfull.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
3 |
|
isfull.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
fullfo.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
5 |
|
fullfo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
fullfo.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
fulli.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
8 |
1 2 3 4 5 6
|
fullfo |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
9 |
|
foelrn |
⊢ ( ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –onto→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ 𝑅 ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) → ∃ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) 𝑅 = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑓 ) ) |
10 |
8 7 9
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) 𝑅 = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑓 ) ) |