Step |
Hyp |
Ref |
Expression |
1 |
|
fulloppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
fulloppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
3 |
|
fulloppc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
4 |
|
fullfunc |
⊢ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
5 |
4
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
7 |
1 2 6
|
funcoppc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
12 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
14 |
8 9 10 11 12 13
|
fullfo |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) –onto→ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
15 |
|
forn |
⊢ ( ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) –onto→ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) → ran ( 𝑦 𝐺 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ran ( 𝑦 𝐺 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
|
ovtpos |
⊢ ( 𝑥 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
18 |
17
|
rneqi |
⊢ ran ( 𝑥 tpos 𝐺 𝑦 ) = ran ( 𝑦 𝐺 𝑥 ) |
19 |
9 2
|
oppchom |
⊢ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) |
20 |
16 18 19
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ran ( 𝑥 tpos 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
20
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ran ( 𝑥 tpos 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
22 |
1 8
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
23 |
|
eqid |
⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) |
24 |
22 23
|
isfull |
⊢ ( 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ↔ ( 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ran ( 𝑥 tpos 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
25 |
7 21 24
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ) |