Step |
Hyp |
Ref |
Expression |
1 |
|
fullpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
2 |
|
fullpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
3 |
|
fullpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
4 |
|
fullpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
5 |
|
fullpropd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
fullpropd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
7 |
|
fullpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
8 |
|
fullpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
9 |
|
relfull |
⊢ Rel ( 𝐴 Full 𝐶 ) |
10 |
|
relfull |
⊢ Rel ( 𝐵 Full 𝐷 ) |
11 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
15 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
16 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
17 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
19 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) |
20 |
18 14 19
|
funcf1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
21 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
22 |
20 21
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
23 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
24 |
20 23
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
25 |
14 15 16 17 22 24
|
homfeqval |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) |
26 |
25
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
27 |
13 26
|
raleqbidva |
⊢ ( ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
28 |
12 27
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
29 |
28
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
30 |
1 2 3 4 5 6 7 8
|
funcpropd |
⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
31 |
30
|
breqd |
⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ) ) |
32 |
31
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
33 |
29 32
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
34 |
18 15
|
isfull |
⊢ ( 𝑓 ( 𝐴 Full 𝐶 ) 𝑔 ↔ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
36 |
35 16
|
isfull |
⊢ ( 𝑓 ( 𝐵 Full 𝐷 ) 𝑔 ↔ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ran ( 𝑥 𝑔 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
37 |
33 34 36
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Full 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Full 𝐷 ) 𝑔 ) ) |
38 |
9 10 37
|
eqbrrdiv |
⊢ ( 𝜑 → ( 𝐴 Full 𝐶 ) = ( 𝐵 Full 𝐷 ) ) |