Step |
Hyp |
Ref |
Expression |
1 |
|
ffthres2c.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
2 |
|
ffthres2c.e |
⊢ 𝐸 = ( 𝐷 ↾s 𝑆 ) |
3 |
|
ffthres2c.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
4 |
|
ffthres2c.r |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
5 |
|
ffthres2c.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
6 |
1 2 3 4 5
|
funcres2c |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ) ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
8 |
2 7
|
resshom |
⊢ ( 𝑆 ∈ 𝑉 → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐸 ) ) |
10 |
9
|
oveqd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝜑 → ( ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
12 |
11
|
2ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
13 |
6 12
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
14 |
1 7
|
isfull |
⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
15 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
16 |
1 15
|
isfull |
⊢ ( 𝐹 ( 𝐶 Full 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ran ( 𝑥 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
17 |
13 14 16
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ 𝐹 ( 𝐶 Full 𝐸 ) 𝐺 ) ) |