Step |
Hyp |
Ref |
Expression |
1 |
|
fullsubc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
fullsubc.h |
⊢ 𝐻 = ( Homf ‘ 𝐶 ) |
3 |
|
fullsubc.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
fullsubc.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
5 |
|
fullsubc.d |
⊢ 𝐷 = ( 𝐶 ↾s 𝑆 ) |
6 |
|
fullsubc.e |
⊢ 𝐸 = ( 𝐶 ↾cat ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) |
10 |
8 9
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
12 |
8 11
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
13 |
2 1 7 10 12
|
homfval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
14 |
9 11
|
ovresd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
15 |
2 1
|
homffn |
⊢ 𝐻 Fn ( 𝐵 × 𝐵 ) |
16 |
|
xpss12 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) |
17 |
4 4 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) |
18 |
|
fnssres |
⊢ ( ( 𝐻 Fn ( 𝐵 × 𝐵 ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) |
19 |
15 17 18
|
sylancr |
⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) |
20 |
6 1 3 19 4
|
reschom |
⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = ( Hom ‘ 𝐸 ) ) |
21 |
20
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
22 |
14 21
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
23 |
5 1
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐷 ) ) |
24 |
4 23
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |
25 |
|
fvex |
⊢ ( Base ‘ 𝐷 ) ∈ V |
26 |
24 25
|
eqeltrdi |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
27 |
5 7
|
resshom |
⊢ ( 𝑆 ∈ V → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
29 |
28
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
30 |
13 22 29
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
31 |
30
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
32 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
33 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
34 |
6 1 3 19 4
|
rescbas |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐸 ) ) |
35 |
32 33 24 34
|
homfeq |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) ) |
36 |
31 35
|
mpbird |
⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ) |
37 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
38 |
5 37
|
ressco |
⊢ ( 𝑆 ∈ V → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐷 ) ) |
39 |
26 38
|
syl |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐷 ) ) |
40 |
6 1 3 19 4 37
|
rescco |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐸 ) ) |
41 |
39 40
|
eqtr3d |
⊢ ( 𝜑 → ( comp ‘ 𝐷 ) = ( comp ‘ 𝐸 ) ) |
42 |
41 36
|
comfeqd |
⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ) |
43 |
36 42
|
jca |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ∧ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ) ) |