Step |
Hyp |
Ref |
Expression |
1 |
|
fullthinc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
fullthinc.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
3 |
|
fullthinc.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
4 |
|
fullthinc.d |
⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |
5 |
|
fullthinc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
6 |
1 2 3
|
isfull2 |
⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
7 |
|
foeq2 |
⊢ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
8 |
|
fo00 |
⊢ ( ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
9 |
8
|
simprbi |
⊢ ( ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) |
10 |
7 9
|
syl6bi |
⊢ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
11 |
10
|
com12 |
⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
12 |
11
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
13 |
6 12
|
simplbiim |
⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
15 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
16 |
|
imor |
⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ↔ ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ∨ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
17 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
18 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
19 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
20 |
1 3 2 17 18 19
|
funcf2 |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) |
23 |
22
|
neqned |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) |
24 |
|
fdomne0 |
⊢ ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) → ( ( 𝑥 𝐺 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) ) |
25 |
21 23 24
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( ( 𝑥 𝐺 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) ) |
26 |
25
|
simprd |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) |
27 |
|
simplll |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐷 ∈ ThinCat ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
29 |
17
|
adantr |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
30 |
1 28 29
|
funcf1 |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
31 |
18
|
adantr |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝑥 ∈ 𝐵 ) |
32 |
30 31
|
ffvelrnd |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
33 |
19
|
adantr |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝑦 ∈ 𝐵 ) |
34 |
30 33
|
ffvelrnd |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
35 |
|
eqidd |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) ) |
36 |
2
|
a1i |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐽 = ( Hom ‘ 𝐷 ) ) |
37 |
27 32 34 35 36
|
thincn0eu |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ↔ ∃! 𝑓 𝑓 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
38 |
26 37
|
mpbid |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ∃! 𝑓 𝑓 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
39 |
|
eusn |
⊢ ( ∃! 𝑓 𝑓 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } ) |
40 |
38 39
|
sylib |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } ) |
41 |
25
|
simpld |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) |
42 |
|
foconst |
⊢ ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ { 𝑓 } ) |
43 |
|
feq3 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ) ) |
44 |
43
|
anbi1d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) ) ) |
45 |
|
foeq3 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ { 𝑓 } ) ) |
46 |
44 45
|
imbi12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ { 𝑓 } ) ) ) |
47 |
42 46
|
mpbiri |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
48 |
47
|
exlimiv |
⊢ ( ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
49 |
48
|
imp |
⊢ ( ( ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } ∧ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
40 21 41 49
|
syl12anc |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
51 |
20
|
adantr |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
52 |
|
feq3 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ) ) |
53 |
52
|
adantl |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ) ) |
54 |
51 53
|
mpbid |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ) |
55 |
|
f00 |
⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ↔ ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
56 |
54 55
|
sylib |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
57 |
56
|
simprd |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐻 𝑦 ) = ∅ ) |
58 |
56
|
simpld |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) = ∅ ) |
59 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) |
60 |
8
|
biimpri |
⊢ ( ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
61 |
60 7
|
syl5ibr |
⊢ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
62 |
61
|
imp |
⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ∧ ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
57 58 59 62
|
syl12anc |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
64 |
50 63
|
jaodan |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ∨ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
65 |
16 64
|
sylan2b |
⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
66 |
65
|
ex |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
67 |
66
|
ralimdvva |
⊢ ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
68 |
67
|
imp |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
69 |
15 68 6
|
sylanbrc |
⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
70 |
14 69
|
impbida |
⊢ ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
71 |
4 5 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |