Metamath Proof Explorer


Theorem fun11

Description: Two ways of stating that A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of TakeutiZaring p. 24, who use the notation "Un_2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion fun11 ( ( Fun 𝐴 ∧ Fun 𝐴 ) ↔ ∀ 𝑥𝑦𝑧𝑤 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 dfbi2 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) ↔ ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤𝑥 = 𝑧 ) ) )
2 1 imbi2i ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤𝑥 = 𝑧 ) ) ) )
3 pm4.76 ( ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ∧ ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤𝑥 = 𝑧 ) ) ) ↔ ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤𝑥 = 𝑧 ) ) ) )
4 bi2.04 ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) )
5 bi2.04 ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤𝑥 = 𝑧 ) ) ↔ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) )
6 4 5 anbi12i ( ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ∧ ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤𝑥 = 𝑧 ) ) ) ↔ ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) )
7 2 3 6 3bitr2i ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) )
8 7 2albii ( ∀ 𝑥𝑦 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ∀ 𝑥𝑦 ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) )
9 19.26-2 ( ∀ 𝑥𝑦 ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ↔ ( ∀ 𝑥𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) )
10 alcom ( ∀ 𝑥𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) )
11 breq1 ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑦 ) )
12 11 anbi1d ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) ↔ ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) ) )
13 12 imbi1d ( 𝑥 = 𝑧 → ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) )
14 13 equsalvw ( ∀ 𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
15 14 albii ( ∀ 𝑦𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
16 10 15 bitri ( ∀ 𝑥𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
17 breq2 ( 𝑦 = 𝑤 → ( 𝑥 𝐴 𝑦𝑥 𝐴 𝑤 ) )
18 17 anbi1d ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) ↔ ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) ) )
19 18 imbi1d ( 𝑦 = 𝑤 → ( ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) )
20 19 equsalvw ( ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
21 20 albii ( ∀ 𝑥𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
22 16 21 anbi12i ( ( ∀ 𝑥𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ↔ ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) )
23 8 9 22 3bitri ( ∀ 𝑥𝑦 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) )
24 23 2albii ( ∀ 𝑧𝑤𝑥𝑦 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ∀ 𝑧𝑤 ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) )
25 19.26-2 ( ∀ 𝑧𝑤 ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ( ∀ 𝑧𝑤𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧𝑤𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) )
26 24 25 bitr2i ( ( ∀ 𝑧𝑤𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧𝑤𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ∀ 𝑧𝑤𝑥𝑦 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )
27 fun2cnv ( Fun 𝐴 ↔ ∀ 𝑧 ∃* 𝑦 𝑧 𝐴 𝑦 )
28 breq2 ( 𝑦 = 𝑤 → ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) )
29 28 mo4 ( ∃* 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑦𝑤 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
30 29 albii ( ∀ 𝑧 ∃* 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑧𝑦𝑤 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
31 alcom ( ∀ 𝑦𝑤 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ∀ 𝑤𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
32 31 albii ( ∀ 𝑧𝑦𝑤 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ∀ 𝑧𝑤𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
33 27 30 32 3bitri ( Fun 𝐴 ↔ ∀ 𝑧𝑤𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) )
34 funcnv2 ( Fun 𝐴 ↔ ∀ 𝑤 ∃* 𝑥 𝑥 𝐴 𝑤 )
35 breq1 ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) )
36 35 mo4 ( ∃* 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑥𝑧 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
37 36 albii ( ∀ 𝑤 ∃* 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑤𝑥𝑧 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
38 alcom ( ∀ 𝑥𝑧 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
39 38 albii ( ∀ 𝑤𝑥𝑧 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑤𝑧𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
40 alcom ( ∀ 𝑤𝑧𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧𝑤𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
41 39 40 bitri ( ∀ 𝑤𝑥𝑧 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧𝑤𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
42 34 37 41 3bitri ( Fun 𝐴 ↔ ∀ 𝑧𝑤𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) )
43 33 42 anbi12i ( ( Fun 𝐴 ∧ Fun 𝐴 ) ↔ ( ∀ 𝑧𝑤𝑦 ( ( 𝑧 𝐴 𝑦𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧𝑤𝑥 ( ( 𝑥 𝐴 𝑤𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) )
44 alrot4 ( ∀ 𝑥𝑦𝑧𝑤 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ∀ 𝑧𝑤𝑥𝑦 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )
45 26 43 44 3bitr4i ( ( Fun 𝐴 ∧ Fun 𝐴 ) ↔ ∀ 𝑥𝑦𝑧𝑤 ( ( 𝑥 𝐴 𝑦𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )