Step |
Hyp |
Ref |
Expression |
1 |
|
dfbi2 |
⊢ ( ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ↔ ( ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) |
2 |
1
|
imbi2i |
⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ) |
3 |
|
pm4.76 |
⊢ ( ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ) ∧ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ↔ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ∧ ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ) |
4 |
|
bi2.04 |
⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ) ↔ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ) |
5 |
|
bi2.04 |
⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ↔ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
6 |
4 5
|
anbi12i |
⊢ ( ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 → 𝑦 = 𝑤 ) ) ∧ ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑦 = 𝑤 → 𝑥 = 𝑧 ) ) ) ↔ ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) |
7 |
2 3 6
|
3bitr2i |
⊢ ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) |
8 |
7
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) |
9 |
|
19.26-2 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ) |
10 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ) |
11 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑦 ↔ 𝑧 𝐴 𝑦 ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) ↔ ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ) |
14 |
13
|
equsalvw |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
16 |
10 15
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
17 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐴 𝑤 ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) ↔ ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) ) ) |
19 |
18
|
imbi1d |
⊢ ( 𝑦 = 𝑤 → ( ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
20 |
19
|
equsalvw |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
21 |
20
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
22 |
16 21
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 = 𝑧 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) ↔ ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
23 |
8 9 22
|
3bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
24 |
23
|
2albii |
⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
25 |
|
19.26-2 |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
26 |
24 25
|
bitr2i |
⊢ ( ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ) |
27 |
|
fun2cnv |
⊢ ( Fun ◡ ◡ 𝐴 ↔ ∀ 𝑧 ∃* 𝑦 𝑧 𝐴 𝑦 ) |
28 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐴 𝑦 ↔ 𝑧 𝐴 𝑤 ) ) |
29 |
28
|
mo4 |
⊢ ( ∃* 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
30 |
29
|
albii |
⊢ ( ∀ 𝑧 ∃* 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑧 ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
31 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
32 |
31
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑦 ∀ 𝑤 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
33 |
27 30 32
|
3bitri |
⊢ ( Fun ◡ ◡ 𝐴 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ) |
34 |
|
funcnv2 |
⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑤 ∃* 𝑥 𝑥 𝐴 𝑤 ) |
35 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑤 ↔ 𝑧 𝐴 𝑤 ) ) |
36 |
35
|
mo4 |
⊢ ( ∃* 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
37 |
36
|
albii |
⊢ ( ∀ 𝑤 ∃* 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑤 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
38 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
39 |
38
|
albii |
⊢ ( ∀ 𝑤 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑤 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
40 |
|
alcom |
⊢ ( ∀ 𝑤 ∀ 𝑧 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
41 |
39 40
|
bitri |
⊢ ( ∀ 𝑤 ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
42 |
34 37 41
|
3bitri |
⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) |
43 |
33 42
|
anbi12i |
⊢ ( ( Fun ◡ ◡ 𝐴 ∧ Fun ◡ 𝐴 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( ( 𝑧 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → 𝑦 = 𝑤 ) ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ( ( 𝑥 𝐴 𝑤 ∧ 𝑧 𝐴 𝑤 ) → 𝑥 = 𝑧 ) ) ) |
44 |
|
alrot4 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ) |
45 |
26 43 44
|
3bitr4i |
⊢ ( ( Fun ◡ ◡ 𝐴 ∧ Fun ◡ 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑥 𝐴 𝑦 ∧ 𝑧 𝐴 𝑤 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑤 ) ) ) |