Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fun2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( 𝐶 ∪ 𝐶 ) ) | |
2 | unidm | ⊢ ( 𝐶 ∪ 𝐶 ) = 𝐶 | |
3 | feq3 | ⊢ ( ( 𝐶 ∪ 𝐶 ) = 𝐶 → ( ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( 𝐶 ∪ 𝐶 ) ↔ ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) | |
4 | 2 3 | ax-mp | ⊢ ( ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( 𝐶 ∪ 𝐶 ) ↔ ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
5 | 1 4 | sylib | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |