Metamath Proof Explorer


Theorem fun2

Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Assertion fun2 ( ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )

Proof

Step Hyp Ref Expression
1 fun ( ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ ( 𝐶𝐶 ) )
2 unidm ( 𝐶𝐶 ) = 𝐶
3 feq3 ( ( 𝐶𝐶 ) = 𝐶 → ( ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ ( 𝐶𝐶 ) ↔ ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 ) )
4 2 3 ax-mp ( ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ ( 𝐶𝐶 ) ↔ ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )
5 1 4 sylib ( ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )