Metamath Proof Explorer


Theorem fun2cnv

Description: The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of TakeutiZaring p. 23, who use the notation "Un(A)" for single-valued. Note that A is not necessarily a function. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion fun2cnv ( Fun 𝐴 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 )

Proof

Step Hyp Ref Expression
1 funcnv2 ( Fun 𝐴 ↔ ∀ 𝑥 ∃* 𝑦 𝑦 𝐴 𝑥 )
2 vex 𝑦 ∈ V
3 vex 𝑥 ∈ V
4 2 3 brcnv ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑦 )
5 4 mobii ( ∃* 𝑦 𝑦 𝐴 𝑥 ↔ ∃* 𝑦 𝑥 𝐴 𝑦 )
6 5 albii ( ∀ 𝑥 ∃* 𝑦 𝑦 𝐴 𝑥 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 )
7 1 6 bitri ( Fun 𝐴 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 )