Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fun2d
Metamath Proof Explorer
Description: The union of functions with disjoint domains is a function, deduction
version of fun2 . (Contributed by AV , 11-Oct-2020) (Revised by AV , 24-Oct-2021)
Ref
Expression
Hypotheses
fun2d.f
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 )
fun2d.g
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐶 )
fun2d.i
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ )
Assertion
fun2d
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 )
Proof
Step
Hyp
Ref
Expression
1
fun2d.f
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 )
2
fun2d.g
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐶 )
3
fun2d.i
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ )
4
fun2
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 )
5
1 2 3 4
syl21anc
⊢ ( 𝜑 → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 )