Metamath Proof Explorer


Theorem fun2d

Description: The union of functions with disjoint domains is a function, deduction version of fun2 . (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses fun2d.f ( 𝜑𝐹 : 𝐴𝐶 )
fun2d.g ( 𝜑𝐺 : 𝐵𝐶 )
fun2d.i ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
Assertion fun2d ( 𝜑 → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )

Proof

Step Hyp Ref Expression
1 fun2d.f ( 𝜑𝐹 : 𝐴𝐶 )
2 fun2d.g ( 𝜑𝐺 : 𝐵𝐶 )
3 fun2d.i ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
4 fun2 ( ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )
5 1 2 3 4 syl21anc ( 𝜑 → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )