Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020) (Proof shortened by AV, 9-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fun2dmnop.a | ⊢ 𝐴 ∈ V | |
fun2dmnop.b | ⊢ 𝐵 ∈ V | ||
Assertion | fun2dmnop | ⊢ ( ( Fun 𝐺 ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun2dmnop.a | ⊢ 𝐴 ∈ V | |
2 | fun2dmnop.b | ⊢ 𝐵 ∈ V | |
3 | fundif | ⊢ ( Fun 𝐺 → Fun ( 𝐺 ∖ { ∅ } ) ) | |
4 | 1 2 | fun2dmnop0 | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) ) |
5 | 3 4 | syl3an1 | ⊢ ( ( Fun 𝐺 ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) ) |