Metamath Proof Explorer


Theorem fun2dmnop

Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020) (Proof shortened by AV, 9-Jun-2021)

Ref Expression
Hypotheses fun2dmnop.a 𝐴 ∈ V
fun2dmnop.b 𝐵 ∈ V
Assertion fun2dmnop ( ( Fun 𝐺𝐴𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 fun2dmnop.a 𝐴 ∈ V
2 fun2dmnop.b 𝐵 ∈ V
3 fundif ( Fun 𝐺 → Fun ( 𝐺 ∖ { ∅ } ) )
4 1 2 fun2dmnop0 ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) )
5 3 4 syl3an1 ( ( Fun 𝐺𝐴𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) )