| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fun2dmnop.a |
⊢ 𝐴 ∈ V |
| 2 |
|
fun2dmnop.b |
⊢ 𝐵 ∈ V |
| 3 |
|
simpl1 |
⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → Fun ( 𝐺 ∖ { ∅ } ) ) |
| 4 |
|
dmexg |
⊢ ( 𝐺 ∈ V → dom 𝐺 ∈ V ) |
| 5 |
4
|
adantl |
⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → dom 𝐺 ∈ V ) |
| 6 |
1 2
|
prss |
⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ) ↔ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) |
| 7 |
|
simpl |
⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ) → 𝐴 ∈ dom 𝐺 ) |
| 8 |
6 7
|
sylbir |
⊢ ( { 𝐴 , 𝐵 } ⊆ dom 𝐺 → 𝐴 ∈ dom 𝐺 ) |
| 9 |
8
|
3ad2ant3 |
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → 𝐴 ∈ dom 𝐺 ) |
| 10 |
9
|
adantr |
⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 𝐴 ∈ dom 𝐺 ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom 𝐺 ∧ 𝐵 ∈ dom 𝐺 ) → 𝐵 ∈ dom 𝐺 ) |
| 12 |
6 11
|
sylbir |
⊢ ( { 𝐴 , 𝐵 } ⊆ dom 𝐺 → 𝐵 ∈ dom 𝐺 ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → 𝐵 ∈ dom 𝐺 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 𝐵 ∈ dom 𝐺 ) |
| 15 |
|
simpl2 |
⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 𝐴 ≠ 𝐵 ) |
| 16 |
5 10 14 15
|
nehash2 |
⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| 17 |
|
fundmge2nop0 |
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ¬ 𝐺 ∈ ( V × V ) ) |
| 18 |
3 16 17
|
syl2anc |
⊢ ( ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) ∧ 𝐺 ∈ V ) → ¬ 𝐺 ∈ ( V × V ) ) |
| 19 |
18
|
ex |
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ( 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) ) |
| 20 |
|
prcnel |
⊢ ( ¬ 𝐺 ∈ V → ¬ 𝐺 ∈ ( V × V ) ) |
| 21 |
19 20
|
pm2.61d1 |
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝐴 ≠ 𝐵 ∧ { 𝐴 , 𝐵 } ⊆ dom 𝐺 ) → ¬ 𝐺 ∈ ( V × V ) ) |