| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funopab | ⊢ ( Fun  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) }  ↔  ∀ 𝑡 ∃* 𝑢 ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 2 |  | adjmo | ⊢ ∃* 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 3 |  | 3simpc | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  →  ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 4 | 3 | moimi | ⊢ ( ∃* 𝑢 ( 𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  →  ∃* 𝑢 ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 5 | 2 4 | ax-mp | ⊢ ∃* 𝑢 ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 6 | 1 5 | mpgbir | ⊢ Fun  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 7 |  | dfadj2 | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 8 | 7 | funeqi | ⊢ ( Fun  adjℎ  ↔  Fun  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } ) | 
						
							| 9 | 6 8 | mpbir | ⊢ Fun  adjℎ |