Step |
Hyp |
Ref |
Expression |
1 |
|
funopab |
⊢ ( Fun { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) } ↔ ∀ 𝑡 ∃* 𝑢 ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
2 |
|
adjmo |
⊢ ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) |
3 |
|
3simpc |
⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) → ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
4 |
3
|
moimi |
⊢ ( ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∃* 𝑢 ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
5 |
2 4
|
ax-mp |
⊢ ∃* 𝑢 ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) |
6 |
1 5
|
mpgbir |
⊢ Fun { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) } |
7 |
|
dfadj2 |
⊢ adjℎ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) } |
8 |
7
|
funeqi |
⊢ ( Fun adjℎ ↔ Fun { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑢 ‘ 𝑥 ) ·ih 𝑦 ) ) } ) |
9 |
6 8
|
mpbir |
⊢ Fun adjℎ |