Metamath Proof Explorer


Theorem funadj

Description: Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion funadj Fun adj

Proof

Step Hyp Ref Expression
1 funopab ( Fun { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) } ↔ ∀ 𝑡 ∃* 𝑢 ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
2 adjmo ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) )
3 3simpc ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) → ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
4 3 moimi ( ∃* 𝑢 ( 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) → ∃* 𝑢 ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) )
5 2 4 ax-mp ∃* 𝑢 ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) )
6 1 5 mpgbir Fun { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) }
7 dfadj2 adj = { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) }
8 7 funeqi ( Fun adj ↔ Fun { ⟨ 𝑡 , 𝑢 ⟩ ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑢𝑥 ) ·ih 𝑦 ) ) } )
9 6 8 mpbir Fun adj