Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funbrfv2b | ⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝐵 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
| 2 | releldm | ⊢ ( ( Rel 𝐹 ∧ 𝐴 𝐹 𝐵 ) → 𝐴 ∈ dom 𝐹 ) | |
| 3 | 2 | ex | ⊢ ( Rel 𝐹 → ( 𝐴 𝐹 𝐵 → 𝐴 ∈ dom 𝐹 ) ) | 
| 4 | 1 3 | syl | ⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝐵 → 𝐴 ∈ dom 𝐹 ) ) | 
| 5 | 4 | pm4.71rd | ⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝐵 ↔ ( 𝐴 ∈ dom 𝐹 ∧ 𝐴 𝐹 𝐵 ) ) ) | 
| 6 | funbrfvb | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐵 ↔ 𝐴 𝐹 𝐵 ) ) | |
| 7 | 6 | pm5.32da | ⊢ ( Fun 𝐹 → ( ( 𝐴 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ↔ ( 𝐴 ∈ dom 𝐹 ∧ 𝐴 𝐹 𝐵 ) ) ) | 
| 8 | 5 7 | bitr4d | ⊢ ( Fun 𝐹 → ( 𝐴 𝐹 𝐵 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝐴 ) = 𝐵 ) ) ) |