Step |
Hyp |
Ref |
Expression |
1 |
|
funcco.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
funcco.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
3 |
|
funcco.o |
⊢ · = ( comp ‘ 𝐷 ) |
4 |
|
funcco.O |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
5 |
|
funcco.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
6 |
|
funcco.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
funcco.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
funcco.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
9 |
|
funcco.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
|
funcco.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 𝐻 𝑍 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
12 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
13 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
14 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
15 |
|
df-br |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
16 |
5 15
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
17 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
20 |
18
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
21 |
1 11 2 12 13 14 3 4 19 20
|
isfunc |
⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
22 |
5 21
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
23 |
22
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
25 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
26 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑀 ∈ ( 𝑋 𝐻 𝑌 ) ) |
27 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑥 = 𝑋 ) |
28 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 ) |
29 |
27 28
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
30 |
26 29
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑀 ∈ ( 𝑥 𝐻 𝑦 ) ) |
31 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑁 ∈ ( 𝑌 𝐻 𝑍 ) ) |
32 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑦 = 𝑌 ) |
33 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑧 = 𝑍 ) |
34 |
32 33
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) ) |
35 |
31 34
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → 𝑁 ∈ ( 𝑦 𝐻 𝑧 ) ) |
36 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑥 = 𝑋 ) |
37 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑧 = 𝑍 ) |
38 |
36 37
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑥 𝐺 𝑧 ) = ( 𝑋 𝐺 𝑍 ) ) |
39 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑦 = 𝑌 ) |
40 |
36 39
|
opeq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑌 〉 ) |
41 |
40 37
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
42 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 ) |
43 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 𝑚 = 𝑀 ) |
44 |
41 42 43
|
oveq123d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) = ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) |
45 |
38 44
|
fveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) ) |
46 |
36
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
47 |
39
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
48 |
46 47
|
opeq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ) |
49 |
37
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑍 ) ) |
50 |
48 49
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) = ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ) |
51 |
39 37
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑦 𝐺 𝑧 ) = ( 𝑌 𝐺 𝑍 ) ) |
52 |
51 42
|
fveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) = ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ) |
53 |
36 39
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) ) |
54 |
53 43
|
fveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) |
55 |
50 52 54
|
oveq123d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |
56 |
45 55
|
eqeq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) ∧ 𝑛 = 𝑁 ) → ( ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
57 |
35 56
|
rspcdv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
58 |
30 57
|
rspcimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
59 |
25 58
|
rspcimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
60 |
24 59
|
rspcimdv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
61 |
60
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
62 |
6 61
|
rspcimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) ) |
63 |
23 62
|
mpd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 𝑂 ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |