| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcestrcsetc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
| 2 |
|
funcestrcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 3 |
|
funcestrcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 4 |
|
funcestrcsetc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 5 |
|
funcestrcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 6 |
|
funcestrcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 7 |
1 3 5
|
estrcbasbas |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝑈 ) |
| 8 |
2 5
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑆 ) ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = 𝑈 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑆 ) = 𝑈 ) |
| 11 |
7 10
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 12 |
11 4
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝐶 ) |
| 13 |
6 12
|
fmpt3d |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |