| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcestrcsetc.e |
⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) |
| 2 |
|
funcestrcsetc.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 3 |
|
funcestrcsetc.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 4 |
|
funcestrcsetc.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 5 |
|
funcestrcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 6 |
|
funcestrcsetc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 7 |
|
funcestrcsetc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 10 |
1 5
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 11 |
3 10
|
eqtr4id |
⊢ ( 𝜑 → 𝐵 = 𝑈 ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ 𝑈 ) ) |
| 13 |
12
|
biimpcd |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝜑 → 𝑋 ∈ 𝑈 ) ) |
| 15 |
14
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝑈 ) |
| 16 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ 𝑈 ) ) |
| 17 |
16
|
biimpcd |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝜑 → 𝑌 ∈ 𝑈 ) ) |
| 19 |
18
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝑈 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 22 |
1 8 9 15 19 20 21
|
estrchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 23 |
22
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ↔ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 24 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑍 ∈ 𝐵 ↔ 𝑍 ∈ 𝑈 ) ) |
| 25 |
24
|
biimpcd |
⊢ ( 𝑍 ∈ 𝐵 → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 26 |
25
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝜑 → 𝑍 ∈ 𝑈 ) ) |
| 27 |
26
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝑈 ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 29 |
1 8 9 19 27 21 28
|
estrchom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) = ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) |
| 30 |
29
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ↔ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) |
| 31 |
23 30
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ) ↔ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) ) |
| 32 |
|
elmapi |
⊢ ( 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) → 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 33 |
|
elmapi |
⊢ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) → 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 34 |
|
fco |
⊢ ( ( 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ∧ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → ( 𝐾 ∘ 𝐻 ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 35 |
32 33 34
|
syl2an |
⊢ ( ( 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ∧ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) → ( 𝐾 ∘ 𝐻 ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 36 |
|
fvex |
⊢ ( Base ‘ 𝑍 ) ∈ V |
| 37 |
|
fvex |
⊢ ( Base ‘ 𝑋 ) ∈ V |
| 38 |
36 37
|
elmap |
⊢ ( ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ↔ ( 𝐾 ∘ 𝐻 ) : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 39 |
35 38
|
sylibr |
⊢ ( ( 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ∧ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 40 |
39
|
ancoms |
⊢ ( ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 42 |
|
fvresi |
⊢ ( ( 𝐾 ∘ 𝐻 ) ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) → ( ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 43 |
41 42
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 44 |
1 2 3 4 5 6 7 20 28
|
funcestrcsetclem5 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 45 |
44
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ) |
| 47 |
8
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑈 ∈ WUni ) |
| 48 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 49 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑋 ∈ 𝑈 ) |
| 50 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑌 ∈ 𝑈 ) |
| 51 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝑍 ∈ 𝑈 ) |
| 52 |
33
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 53 |
32
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 54 |
1 47 48 49 50 51 20 21 28 52 53
|
estrcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) = ( 𝐾 ∘ 𝐻 ) ) |
| 55 |
46 54
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( I ↾ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑋 ) ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 56 |
|
eqid |
⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) |
| 57 |
1 2 3 4 5 6
|
funcestrcsetclem2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 58 |
57
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 60 |
1 2 3 4 5 6
|
funcestrcsetclem2 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 61 |
60
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 63 |
1 2 3 4 5 6
|
funcestrcsetclem2 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 64 |
63
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 66 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 67 |
66
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 68 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 69 |
68
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 70 |
67 69
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 72 |
52 71
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) |
| 73 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝜑 ) |
| 74 |
|
3simpa |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 75 |
74
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 76 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) |
| 77 |
1 2 3 4 5 6 7 20 21
|
funcestrcsetclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 78 |
73 75 76 77
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 79 |
78
|
feq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) ) |
| 80 |
72 79
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) |
| 81 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) = ( Base ‘ 𝑍 ) ) |
| 82 |
81
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑍 ) = ( Base ‘ 𝑍 ) ) |
| 83 |
69 82
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 85 |
53 84
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) |
| 86 |
|
3simpc |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) |
| 87 |
86
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) |
| 88 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) |
| 89 |
1 2 3 4 5 6 7 21 28
|
funcestrcsetclem6 |
⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 90 |
73 87 88 89
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 91 |
90
|
feq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) ) |
| 92 |
85 91
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) |
| 93 |
2 47 56 59 62 65 80 92
|
setcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 94 |
90 78
|
coeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 95 |
93 94
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 96 |
43 55 95
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 97 |
96
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ∧ 𝐾 ∈ ( ( Base ‘ 𝑍 ) ↑m ( Base ‘ 𝑌 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 98 |
31 97
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 99 |
98
|
3impia |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐸 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐸 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |