Step |
Hyp |
Ref |
Expression |
1 |
|
funcf1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
funcf1.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
funcf1.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
4 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
5 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
6 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
7 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
8 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
9 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
10 |
|
df-br |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
11 |
3 10
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
12 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
15 |
13
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
16 |
1 2 4 5 6 7 8 9 14 15
|
isfunc |
⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
17 |
3 16
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
18 |
17
|
simp1d |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |