| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funcixp.b | ⊢ 𝐵  =  ( Base ‘ 𝐷 ) | 
						
							| 2 |  | funcixp.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐷 ) | 
						
							| 3 |  | funcixp.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐸 ) | 
						
							| 4 |  | funcixp.f | ⊢ ( 𝜑  →  𝐹 ( 𝐷  Func  𝐸 ) 𝐺 ) | 
						
							| 5 |  | funcf2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | funcf2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | df-ov | ⊢ ( 𝑋 𝐺 𝑌 )  =  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 8 | 1 2 3 4 | funcixp | ⊢ ( 𝜑  →  𝐺  ∈  X 𝑧  ∈  ( 𝐵  ×  𝐵 ) ( ( ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) ) )  ↑m  ( 𝐻 ‘ 𝑧 ) ) ) | 
						
							| 9 | 5 6 | opelxpd | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 10 |  | 2fveq3 | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) ) | 
						
							| 11 |  | 2fveq3 | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) ) )  =  ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 14 |  | df-ov | ⊢ ( 𝑋 𝐻 𝑌 )  =  ( 𝐻 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 15 | 13 14 | eqtr4di | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 16 | 12 15 | oveq12d | ⊢ ( 𝑧  =  〈 𝑋 ,  𝑌 〉  →  ( ( ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) ) )  ↑m  ( 𝐻 ‘ 𝑧 ) )  =  ( ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) )  ↑m  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 17 | 16 | fvixp | ⊢ ( ( 𝐺  ∈  X 𝑧  ∈  ( 𝐵  ×  𝐵 ) ( ( ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) ) )  ↑m  ( 𝐻 ‘ 𝑧 ) )  ∧  〈 𝑋 ,  𝑌 〉  ∈  ( 𝐵  ×  𝐵 ) )  →  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  ( ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) )  ↑m  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 18 | 8 9 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  ( ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) )  ↑m  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 19 | 7 18 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑋 𝐺 𝑌 )  ∈  ( ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) )  ↑m  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 20 |  | op1stg | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 )  =  𝑋 ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 22 |  | op2ndg | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 )  =  𝑌 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 24 | 21 23 | oveq12d | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 25 | 5 6 24 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) )  ↑m  ( 𝑋 𝐻 𝑌 ) )  =  ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) )  ↑m  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 27 | 19 26 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑋 𝐺 𝑌 )  ∈  ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) )  ↑m  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 28 |  | elmapi | ⊢ ( ( 𝑋 𝐺 𝑌 )  ∈  ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) )  ↑m  ( 𝑋 𝐻 𝑌 ) )  →  ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |