Step |
Hyp |
Ref |
Expression |
1 |
|
funcixp.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
funcixp.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
3 |
|
funcixp.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
4 |
|
funcixp.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
5 |
|
funcf2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
funcf2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
df-ov |
⊢ ( 𝑋 𝐺 𝑌 ) = ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) |
8 |
1 2 3 4
|
funcixp |
⊢ ( 𝜑 → 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
9 |
5 6
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
10 |
|
2fveq3 |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
11 |
|
2fveq3 |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
12 |
10 11
|
oveq12d |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
14 |
|
df-ov |
⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) |
15 |
13 14
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑋 𝐻 𝑌 ) ) |
16 |
12 15
|
oveq12d |
⊢ ( 𝑧 = 〈 𝑋 , 𝑌 〉 → ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) ) |
17 |
16
|
fvixp |
⊢ ( ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) → ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) ) |
18 |
8 9 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) ) |
19 |
7 18
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) ) |
20 |
|
op1stg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
22 |
|
op2ndg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
24 |
21 23
|
oveq12d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
25 |
5 6 24
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) ) |
27 |
19 26
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) ∈ ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) ) |
28 |
|
elmapi |
⊢ ( ( 𝑋 𝐺 𝑌 ) ∈ ( ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ↑m ( 𝑋 𝐻 𝑌 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
29 |
27 28
|
syl |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |