Step |
Hyp |
Ref |
Expression |
1 |
|
elixp2 |
⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
3 |
|
df-ov |
⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝐺 ‘ 〈 𝑥 , 𝑦 〉 ) |
4 |
2 3
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐺 ‘ 𝑧 ) = ( 𝑥 𝐺 𝑦 ) ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
|
vex |
⊢ 𝑦 ∈ V |
7 |
5 6
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
8 |
7
|
fveq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
5 6
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
10 |
9
|
fveq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
11 |
8 10
|
oveq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
13 |
|
df-ov |
⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) |
14 |
12 13
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
15 |
11 14
|
oveq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) |
16 |
4 15
|
eleq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ) ) |
17 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∈ V |
18 |
|
ovex |
⊢ ( 𝑥 𝐻 𝑦 ) ∈ V |
19 |
17 18
|
elmap |
⊢ ( ( 𝑥 𝐺 𝑦 ) ∈ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↑m ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
16 19
|
bitrdi |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
21 |
20
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
22 |
21
|
3anbi3i |
⊢ ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( 𝐺 ‘ 𝑧 ) ∈ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
23 |
1 22
|
bitri |
⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |