Step |
Hyp |
Ref |
Expression |
1 |
|
funciso.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
funciso.s |
⊢ 𝐼 = ( Iso ‘ 𝐷 ) |
3 |
|
funciso.t |
⊢ 𝐽 = ( Iso ‘ 𝐸 ) |
4 |
|
funciso.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
5 |
|
funciso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
funciso.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
funciso.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐼 𝑌 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
9 |
|
eqid |
⊢ ( Inv ‘ 𝐸 ) = ( Inv ‘ 𝐸 ) |
10 |
|
df-br |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
11 |
4 10
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
12 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
14 |
13
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
15 |
1 8 4
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
16 |
15 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐸 ) ) |
17 |
15 6
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐸 ) ) |
18 |
|
eqid |
⊢ ( Inv ‘ 𝐷 ) = ( Inv ‘ 𝐷 ) |
19 |
13
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
20 |
1 2 18 19 5 6 7
|
invisoinvr |
⊢ ( 𝜑 → 𝑀 ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) |
21 |
1 18 9 4 5 6 20
|
funcinv |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) ) |
22 |
8 9 14 16 17 3 21
|
inviso1 |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |