| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funciso.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
funciso.s |
⊢ 𝐼 = ( Iso ‘ 𝐷 ) |
| 3 |
|
funciso.t |
⊢ 𝐽 = ( Iso ‘ 𝐸 ) |
| 4 |
|
funciso.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 5 |
|
funciso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
funciso.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
funciso.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 9 |
|
eqid |
⊢ ( Inv ‘ 𝐸 ) = ( Inv ‘ 𝐸 ) |
| 10 |
|
df-br |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 11 |
4 10
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 14 |
13
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 15 |
1 8 4
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
| 16 |
15 5
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐸 ) ) |
| 17 |
15 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐸 ) ) |
| 18 |
|
eqid |
⊢ ( Inv ‘ 𝐷 ) = ( Inv ‘ 𝐷 ) |
| 19 |
13
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 20 |
1 2 18 19 5 6 7
|
invisoinvr |
⊢ ( 𝜑 → 𝑀 ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) |
| 21 |
1 18 9 4 5 6 20
|
funcinv |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ ( ( 𝑋 ( Inv ‘ 𝐷 ) 𝑌 ) ‘ 𝑀 ) ) ) |
| 22 |
8 9 14 16 17 3 21
|
inviso1 |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |