Metamath Proof Explorer


Theorem funcixp

Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses funcixp.b 𝐵 = ( Base ‘ 𝐷 )
funcixp.h 𝐻 = ( Hom ‘ 𝐷 )
funcixp.j 𝐽 = ( Hom ‘ 𝐸 )
funcixp.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
Assertion funcixp ( 𝜑𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 funcixp.b 𝐵 = ( Base ‘ 𝐷 )
2 funcixp.h 𝐻 = ( Hom ‘ 𝐷 )
3 funcixp.j 𝐽 = ( Hom ‘ 𝐸 )
4 funcixp.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
5 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
6 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
7 eqid ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 )
8 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
9 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
10 df-br ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
11 4 10 sylib ( 𝜑 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
12 funcrcl ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) )
13 11 12 syl ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) )
14 13 simpld ( 𝜑𝐷 ∈ Cat )
15 13 simprd ( 𝜑𝐸 ∈ Cat )
16 1 5 2 3 6 7 8 9 14 15 isfunc ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ∧ 𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) ∧ ∀ 𝑥𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑥 ) ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
17 4 16 mpbid ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ∧ 𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) ∧ ∀ 𝑥𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹𝑥 ) ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ( comp ‘ 𝐸 ) ( 𝐹𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) )
18 17 simp2d ( 𝜑𝐺X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd𝑧 ) ) ) ↑m ( 𝐻𝑧 ) ) )