| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funcixp.b | ⊢ 𝐵  =  ( Base ‘ 𝐷 ) | 
						
							| 2 |  | funcixp.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐷 ) | 
						
							| 3 |  | funcixp.j | ⊢ 𝐽  =  ( Hom  ‘ 𝐸 ) | 
						
							| 4 |  | funcixp.f | ⊢ ( 𝜑  →  𝐹 ( 𝐷  Func  𝐸 ) 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 ) | 
						
							| 6 |  | eqid | ⊢ ( Id ‘ 𝐷 )  =  ( Id ‘ 𝐷 ) | 
						
							| 7 |  | eqid | ⊢ ( Id ‘ 𝐸 )  =  ( Id ‘ 𝐸 ) | 
						
							| 8 |  | eqid | ⊢ ( comp ‘ 𝐷 )  =  ( comp ‘ 𝐷 ) | 
						
							| 9 |  | eqid | ⊢ ( comp ‘ 𝐸 )  =  ( comp ‘ 𝐸 ) | 
						
							| 10 |  | df-br | ⊢ ( 𝐹 ( 𝐷  Func  𝐸 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐷  Func  𝐸 ) ) | 
						
							| 11 | 4 10 | sylib | ⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐷  Func  𝐸 ) ) | 
						
							| 12 |  | funcrcl | ⊢ ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐷  Func  𝐸 )  →  ( 𝐷  ∈  Cat  ∧  𝐸  ∈  Cat ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ( 𝐷  ∈  Cat  ∧  𝐸  ∈  Cat ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝜑  →  𝐷  ∈  Cat ) | 
						
							| 15 | 13 | simprd | ⊢ ( 𝜑  →  𝐸  ∈  Cat ) | 
						
							| 16 | 1 5 2 3 6 7 8 9 14 15 | isfunc | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐷  Func  𝐸 ) 𝐺  ↔  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 )  ∧  𝐺  ∈  X 𝑧  ∈  ( 𝐵  ×  𝐵 ) ( ( ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) ) )  ↑m  ( 𝐻 ‘ 𝑧 ) )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑚  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑛  ∈  ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) )  =  ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) | 
						
							| 17 | 4 16 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 )  ∧  𝐺  ∈  X 𝑧  ∈  ( 𝐵  ×  𝐵 ) ( ( ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) ) )  ↑m  ( 𝐻 ‘ 𝑧 ) )  ∧  ∀ 𝑥  ∈  𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) )  =  ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑚  ∈  ( 𝑥 𝐻 𝑦 ) ∀ 𝑛  ∈  ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑚 ) )  =  ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) | 
						
							| 18 | 17 | simp2d | ⊢ ( 𝜑  →  𝐺  ∈  X 𝑧  ∈  ( 𝐵  ×  𝐵 ) ( ( ( 𝐹 ‘ ( 1st  ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd  ‘ 𝑧 ) ) )  ↑m  ( 𝐻 ‘ 𝑧 ) ) ) |