Description: A simpler equivalence for single-rooted (see funcnv ). (Contributed by NM, 9-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | funcnv2 | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv | ⊢ Rel ◡ 𝐴 | |
2 | dffun6 | ⊢ ( Fun ◡ 𝐴 ↔ ( Rel ◡ 𝐴 ∧ ∀ 𝑦 ∃* 𝑥 𝑦 ◡ 𝐴 𝑥 ) ) | |
3 | 1 2 | mpbiran | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∃* 𝑥 𝑦 ◡ 𝐴 𝑥 ) |
4 | vex | ⊢ 𝑦 ∈ V | |
5 | vex | ⊢ 𝑥 ∈ V | |
6 | 4 5 | brcnv | ⊢ ( 𝑦 ◡ 𝐴 𝑥 ↔ 𝑥 𝐴 𝑦 ) |
7 | 6 | mobii | ⊢ ( ∃* 𝑥 𝑦 ◡ 𝐴 𝑥 ↔ ∃* 𝑥 𝑥 𝐴 𝑦 ) |
8 | 7 | albii | ⊢ ( ∀ 𝑦 ∃* 𝑥 𝑦 ◡ 𝐴 𝑥 ↔ ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 ) |
9 | 3 8 | bitri | ⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 ) |