Metamath Proof Explorer


Theorem funcnv2

Description: A simpler equivalence for single-rooted (see funcnv ). (Contributed by NM, 9-Aug-2004)

Ref Expression
Assertion funcnv2 ( Fun 𝐴 ↔ ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 )

Proof

Step Hyp Ref Expression
1 relcnv Rel 𝐴
2 dffun6 ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑦 ∃* 𝑥 𝑦 𝐴 𝑥 ) )
3 1 2 mpbiran ( Fun 𝐴 ↔ ∀ 𝑦 ∃* 𝑥 𝑦 𝐴 𝑥 )
4 vex 𝑦 ∈ V
5 vex 𝑥 ∈ V
6 4 5 brcnv ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑦 )
7 6 mobii ( ∃* 𝑥 𝑦 𝐴 𝑥 ↔ ∃* 𝑥 𝑥 𝐴 𝑦 )
8 7 albii ( ∀ 𝑦 ∃* 𝑥 𝑦 𝐴 𝑥 ↔ ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 )
9 3 8 bitri ( Fun 𝐴 ↔ ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 )