Step |
Hyp |
Ref |
Expression |
1 |
|
dfrn2 |
⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |
2 |
1
|
abeq2i |
⊢ ( 𝑦 ∈ ran 𝐴 ↔ ∃ 𝑥 𝑥 𝐴 𝑦 ) |
3 |
2
|
biimpi |
⊢ ( 𝑦 ∈ ran 𝐴 → ∃ 𝑥 𝑥 𝐴 𝑦 ) |
4 |
3
|
biantrurd |
⊢ ( 𝑦 ∈ ran 𝐴 → ( ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) ) |
5 |
4
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ ran 𝐴 ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ∈ ran 𝐴 ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
6 |
|
funcnv |
⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∈ ran 𝐴 ∃* 𝑥 𝑥 𝐴 𝑦 ) |
7 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ↔ ∃! 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
8 |
|
vex |
⊢ 𝑥 ∈ V |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
8 9
|
breldm |
⊢ ( 𝑥 𝐴 𝑦 → 𝑥 ∈ dom 𝐴 ) |
11 |
10
|
pm4.71ri |
⊢ ( 𝑥 𝐴 𝑦 ↔ ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
12 |
11
|
eubii |
⊢ ( ∃! 𝑥 𝑥 𝐴 𝑦 ↔ ∃! 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
13 |
|
df-eu |
⊢ ( ∃! 𝑥 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
14 |
7 12 13
|
3bitr2i |
⊢ ( ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
15 |
14
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ran 𝐴 ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ∈ ran 𝐴 ( ∃ 𝑥 𝑥 𝐴 𝑦 ∧ ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
16 |
5 6 15
|
3bitr4i |
⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∈ ran 𝐴 ∃! 𝑥 ∈ dom 𝐴 𝑥 𝐴 𝑦 ) |