Step |
Hyp |
Ref |
Expression |
1 |
|
funcnvmpt.0 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
funcnvmpt.1 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
funcnvmpt.2 |
⊢ Ⅎ 𝑥 𝐹 |
4 |
|
funcnvmpt.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
|
funcnvmpt.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
6 |
|
funcnv5mpt.1 |
⊢ ( 𝑥 = 𝑧 → 𝐵 = 𝐶 ) |
7 |
1 2 3 4 5
|
funcnvmpt |
⊢ ( 𝜑 → ( Fun ◡ 𝐹 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
8 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) |
9 |
|
eqvincg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 = 𝐶 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) ) ) |
10 |
5 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 = 𝐶 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) ) ) |
11 |
8 10
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝐵 ≠ 𝐶 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) ) ) |
12 |
11
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ¬ 𝐵 ≠ 𝐶 → 𝑥 = 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) ) |
13 |
|
orcom |
⊢ ( ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ↔ ( 𝐵 ≠ 𝐶 ∨ 𝑥 = 𝑧 ) ) |
14 |
|
df-or |
⊢ ( ( 𝐵 ≠ 𝐶 ∨ 𝑥 = 𝑧 ) ↔ ( ¬ 𝐵 ≠ 𝐶 → 𝑥 = 𝑧 ) ) |
15 |
13 14
|
bitri |
⊢ ( ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ↔ ( ¬ 𝐵 ≠ 𝐶 → 𝑥 = 𝑧 ) ) |
16 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) |
17 |
12 15 16
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ↔ ∀ 𝑦 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) ) |
18 |
17
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) ) |
19 |
|
ralcom4 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) |
20 |
18 19
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ↔ ∀ 𝑦 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) ) |
21 |
1 20
|
ralbida |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
23 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝐶 |
24 |
6
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐶 ) ) |
25 |
2 22 23 24
|
rmo4f |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) |
26 |
25
|
albii |
⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) |
27 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) |
28 |
26 27
|
bitr4i |
⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 = 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑥 = 𝑧 ) ) |
29 |
21 28
|
bitr4di |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
30 |
7 29
|
bitr4d |
⊢ ( 𝜑 → ( Fun ◡ 𝐹 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶 ) ) ) |