Metamath Proof Explorer


Theorem funcnvcnv

Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004)

Ref Expression
Assertion funcnvcnv ( Fun 𝐴 → Fun 𝐴 )

Proof

Step Hyp Ref Expression
1 cnvcnvss 𝐴𝐴
2 funss ( 𝐴𝐴 → ( Fun 𝐴 → Fun 𝐴 ) )
3 1 2 ax-mp ( Fun 𝐴 → Fun 𝐴 )