Metamath Proof Explorer


Theorem funcnvpr

Description: The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvpr ( ( 𝐴𝑈𝐶𝑉𝐵𝐷 ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } )

Proof

Step Hyp Ref Expression
1 funcnvsn Fun { ⟨ 𝐴 , 𝐵 ⟩ }
2 funcnvsn Fun { ⟨ 𝐶 , 𝐷 ⟩ }
3 1 2 pm3.2i ( Fun { ⟨ 𝐴 , 𝐵 ⟩ } ∧ Fun { ⟨ 𝐶 , 𝐷 ⟩ } )
4 df-rn ran { ⟨ 𝐴 , 𝐵 ⟩ } = dom { ⟨ 𝐴 , 𝐵 ⟩ }
5 rnsnopg ( 𝐴𝑈 → ran { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐵 } )
6 4 5 eqtr3id ( 𝐴𝑈 → dom { ⟨ 𝐴 , 𝐵 ⟩ } = { 𝐵 } )
7 df-rn ran { ⟨ 𝐶 , 𝐷 ⟩ } = dom { ⟨ 𝐶 , 𝐷 ⟩ }
8 rnsnopg ( 𝐶𝑉 → ran { ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐷 } )
9 7 8 eqtr3id ( 𝐶𝑉 → dom { ⟨ 𝐶 , 𝐷 ⟩ } = { 𝐷 } )
10 6 9 ineqan12d ( ( 𝐴𝑈𝐶𝑉 ) → ( dom { ⟨ 𝐴 , 𝐵 ⟩ } ∩ dom { ⟨ 𝐶 , 𝐷 ⟩ } ) = ( { 𝐵 } ∩ { 𝐷 } ) )
11 10 3adant3 ( ( 𝐴𝑈𝐶𝑉𝐵𝐷 ) → ( dom { ⟨ 𝐴 , 𝐵 ⟩ } ∩ dom { ⟨ 𝐶 , 𝐷 ⟩ } ) = ( { 𝐵 } ∩ { 𝐷 } ) )
12 disjsn2 ( 𝐵𝐷 → ( { 𝐵 } ∩ { 𝐷 } ) = ∅ )
13 12 3ad2ant3 ( ( 𝐴𝑈𝐶𝑉𝐵𝐷 ) → ( { 𝐵 } ∩ { 𝐷 } ) = ∅ )
14 11 13 eqtrd ( ( 𝐴𝑈𝐶𝑉𝐵𝐷 ) → ( dom { ⟨ 𝐴 , 𝐵 ⟩ } ∩ dom { ⟨ 𝐶 , 𝐷 ⟩ } ) = ∅ )
15 funun ( ( ( Fun { ⟨ 𝐴 , 𝐵 ⟩ } ∧ Fun { ⟨ 𝐶 , 𝐷 ⟩ } ) ∧ ( dom { ⟨ 𝐴 , 𝐵 ⟩ } ∩ dom { ⟨ 𝐶 , 𝐷 ⟩ } ) = ∅ ) → Fun ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } ) )
16 3 14 15 sylancr ( ( 𝐴𝑈𝐶𝑉𝐵𝐷 ) → Fun ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } ) )
17 df-pr { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
18 17 cnveqi { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
19 cnvun ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
20 18 19 eqtri { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
21 20 funeqi ( Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } ↔ Fun ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } ) )
22 16 21 sylibr ( ( 𝐴𝑈𝐶𝑉𝐵𝐷 ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } )