| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
| 2 |
|
df-rn |
⊢ ran ( 𝐹 ↾ 𝐴 ) = dom ◡ ( 𝐹 ↾ 𝐴 ) |
| 3 |
1 2
|
eqtri |
⊢ ( 𝐹 “ 𝐴 ) = dom ◡ ( 𝐹 ↾ 𝐴 ) |
| 4 |
3
|
reseq2i |
⊢ ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐴 ) ) = ( ◡ 𝐹 ↾ dom ◡ ( 𝐹 ↾ 𝐴 ) ) |
| 5 |
|
resss |
⊢ ( 𝐹 ↾ 𝐴 ) ⊆ 𝐹 |
| 6 |
|
cnvss |
⊢ ( ( 𝐹 ↾ 𝐴 ) ⊆ 𝐹 → ◡ ( 𝐹 ↾ 𝐴 ) ⊆ ◡ 𝐹 ) |
| 7 |
5 6
|
ax-mp |
⊢ ◡ ( 𝐹 ↾ 𝐴 ) ⊆ ◡ 𝐹 |
| 8 |
|
funssres |
⊢ ( ( Fun ◡ 𝐹 ∧ ◡ ( 𝐹 ↾ 𝐴 ) ⊆ ◡ 𝐹 ) → ( ◡ 𝐹 ↾ dom ◡ ( 𝐹 ↾ 𝐴 ) ) = ◡ ( 𝐹 ↾ 𝐴 ) ) |
| 9 |
7 8
|
mpan2 |
⊢ ( Fun ◡ 𝐹 → ( ◡ 𝐹 ↾ dom ◡ ( 𝐹 ↾ 𝐴 ) ) = ◡ ( 𝐹 ↾ 𝐴 ) ) |
| 10 |
4 9
|
eqtr2id |
⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ 𝐴 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐴 ) ) ) |