Metamath Proof Explorer


Theorem funcnvs1

Description: The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021)

Ref Expression
Assertion funcnvs1 Fun ⟨“ 𝐴 ”⟩

Proof

Step Hyp Ref Expression
1 funcnvsn Fun { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
2 df-s1 ⟨“ 𝐴 ”⟩ = { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
3 2 cnveqi ⟨“ 𝐴 ”⟩ = { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
4 3 funeqi ( Fun ⟨“ 𝐴 ”⟩ ↔ Fun { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ } )
5 1 4 mpbir Fun ⟨“ 𝐴 ”⟩