Metamath Proof Explorer


Theorem funcnvs2

Description: The converse of a length 2 word is a function if its symbols are different sets. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvs2 ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → Fun ⟨“ 𝐴 𝐵 ”⟩ )

Proof

Step Hyp Ref Expression
1 c0ex 0 ∈ V
2 1ex 1 ∈ V
3 simp3 ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → 𝐴𝐵 )
4 funcnvpr ( ( 0 ∈ V ∧ 1 ∈ V ∧ 𝐴𝐵 ) → Fun { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } )
5 1 2 3 4 mp3an12i ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → Fun { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } )
6 s2prop ( ( 𝐴𝑉𝐵𝑉 ) → ⟨“ 𝐴 𝐵 ”⟩ = { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } )
7 6 3adant3 ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → ⟨“ 𝐴 𝐵 ”⟩ = { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } )
8 7 cnveqd ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → ⟨“ 𝐴 𝐵 ”⟩ = { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } )
9 8 funeqd ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → ( Fun ⟨“ 𝐴 𝐵 ”⟩ ↔ Fun { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) )
10 5 9 mpbird ( ( 𝐴𝑉𝐵𝑉𝐴𝐵 ) → Fun ⟨“ 𝐴 𝐵 ”⟩ )