Metamath Proof Explorer


Theorem funcnvsn

Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn via cnvsn , but stating it this way allows us to skip the sethood assumptions on A and B . (Contributed by NM, 30-Apr-2015)

Ref Expression
Assertion funcnvsn Fun { ⟨ 𝐴 , 𝐵 ⟩ }

Proof

Step Hyp Ref Expression
1 relcnv Rel { ⟨ 𝐴 , 𝐵 ⟩ }
2 moeq ∃* 𝑦 𝑦 = 𝐴
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 3 4 brcnv ( 𝑥 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑦𝑦 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑥 )
6 df-br ( 𝑦 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑥 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
7 5 6 bitri ( 𝑥 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑦 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } )
8 elsni ( ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } → ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
9 4 3 opth1 ( ⟨ 𝑦 , 𝑥 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ → 𝑦 = 𝐴 )
10 8 9 syl ( ⟨ 𝑦 , 𝑥 ⟩ ∈ { ⟨ 𝐴 , 𝐵 ⟩ } → 𝑦 = 𝐴 )
11 7 10 sylbi ( 𝑥 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑦𝑦 = 𝐴 )
12 11 moimi ( ∃* 𝑦 𝑦 = 𝐴 → ∃* 𝑦 𝑥 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑦 )
13 2 12 ax-mp ∃* 𝑦 𝑥 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑦
14 13 ax-gen 𝑥 ∃* 𝑦 𝑥 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑦
15 dffun6 ( Fun { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ( Rel { ⟨ 𝐴 , 𝐵 ⟩ } ∧ ∀ 𝑥 ∃* 𝑦 𝑥 { ⟨ 𝐴 , 𝐵 ⟩ } 𝑦 ) )
16 1 14 15 mpbir2an Fun { ⟨ 𝐴 , 𝐵 ⟩ }